Advertisement

Annals of Global Analysis and Geometry

, Volume 10, Issue 3, pp 263–273 | Cite as

Harmonic spinors on Riemann surfaces

  • Christian Bär
  • Paul Schmutz
Article

Abstract

We calculate the dimension of the space of harmonic spinors on hyperelliptic Riemann surfaces for all spin structures. Furthermore, we present non-hype relliptic examples of genus 4 and 6 on which the maximal possible number of linearly independent harmonic spinors is achieved.

Key words

Compact Riemann surfaces hyperelliptic Riemann surfaces harmonic spinors Dirac operator 

MSC 1991

30F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Atiyah, M.: Reimann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4 (1971), 47–62.Google Scholar
  2. [2]
    Bär, C.: Lower eigenvalue estimates for Dirac operators. To appear in Math. Ann. Google Scholar
  3. [3]
    Beardon, C.: The geometry of discrete groups. Springer Verlag Berlin-Heidelberg-New York, 1983.Google Scholar
  4. [4]
    Farkas, H.: Special divisors and analytic oubloci of Teichmüller space. Amer. J. Math. 88 (1966), 881–901.Google Scholar
  5. [5]
    Farkas, H.; Kra I.: Riemann surfaces. Springer-Verlag Berlin-Heidelberg-New York, 1980.Google Scholar
  6. [6]
    Friedrich, T.: Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur. Collect. Math. 48 (1984), 57–62.Google Scholar
  7. [7]
    Gunning, R. C.: Lectures on Reemann surfaces. Princeton University Press, Princeton 1966.Google Scholar
  8. [8]
    Hitchin, N.: Harmonic spinors. Adv. in Math. 14 (1974), 1–55.Google Scholar
  9. [9]
    Lawson, B.; Michelsohn, M.-L.: spin geometry. Princeton University Press, Princeton 1989.Google Scholar
  10. [10]
    Martens, H.: Varietes of special divisors on a curve II. J. Reine Angew. Math. 233 (1968), 89–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Christian Bär
    • 1
  • Paul Schmutz
    • 2
  1. 1.Mathematisches InstitutUniversität BonnBonn 1Germany
  2. 2.EPFL-DMALausanneSwitzerland

Personalised recommendations