Biotechnology Letters

, Volume 16, Issue 3, pp 275–280 | Cite as

Production and properties of inulinase from Aspergillus niger

  • Gaye Öngen-Baysal
  • Ş. Suha Sukan
  • Nikolay Vassilev


A thermostable inulinase was identified in a strain of A. niger. The highest activity was observed at 50 °C (50 Lml−1) and 77% and 34% of this was retained at 60° and 65°C, respectively. pH stability, the effect of thermal stabilizers such as Propylene glycol (10%) and Sorbitol (10%) and effects of different cations were investigated. It was found that the activity was completely inhibited by Ag+ and Hg2+, while Na+ had an activator effect.


Organic Chemistry Propylene Glycol Thermal Stabilizer High Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azhari, R., Szlak, M.A., Iran, E., Sideman, S. and Lotan, N. (1989). Biotechol. Appl. Biochem., 11, 105–117.Google Scholar
  2. Derycke, G.D. and Vandamme, J.E. (1984). J. Chem. Biotechnol. 34 B, 45–51.Google Scholar
  3. Elyachioui, M., Hornoz J.P. and Tailliez, R. (1992). J. Appl. Bacteriol., 73, 514–519.Google Scholar
  4. Ettalibi, M. and Baratti, J.C. (1990). Agric. Biol. Chem., 54, 61–68.Google Scholar
  5. Fleming, S.E. and Groot Wassink, J.W.D. (1979). CRC Critial Reviews in Food Science and Nutrition. 12(1), 1–28.Google Scholar
  6. Fuchs, A. (1990). InProc. Third Seminar on Inulin (Fuchs, A., ed.), pp. 80–102. NRLO report 90/28, NRLO, The Hague.Google Scholar
  7. Guiraud, J.P., Viard-Gardin, C. and Galzy, P. (1980). Aqric. Biol. Chem., 44, 1245–1252.Google Scholar
  8. Gupta, A.K., Rathore, P., Kaur, N. and Sigh, R. (1990). J. Chem. Tech. Biotechnol., 47, 245–257.Google Scholar
  9. Miller, G.L. (1959). Anal. Chem. 31, 426–428.Google Scholar
  10. Nakamura, T., Kurokawa, T., Nakatsu, S. and Ueda, S. (1978 a). Nippon Nogeikagaku Kaishi 4, 159–166.Google Scholar
  11. Nakamura, T., Maruki, S., Nakatsu, S. and Uedo, S. (1978 b). Nippon Nogeikagaku Kaishi, 52, 12, 581–587.Google Scholar
  12. Norman, E.B. and Zittan, L. (1982). Novo Research Report A-0514.Google Scholar
  13. O'Fagain, C., Sheehan, H., O'Kennedy, R. and Kilty, C. (1988). Proc. Biochem. December 166–171.Google Scholar
  14. Ohta, K., Hamada, S. and Nakamura, T. (1993). Appl. Environ. Microbiol., 59, 3, 729–733.Google Scholar
  15. Parekh, S. and Margaritis, A. (1986). Agric. Biol. Chem., 50, 4, 1985–1087.Google Scholar
  16. Rouwenhorst, P.J., Visser, E.L., Van Der Baan, A.A. and Scheffers, W.A., Van Dijken, P.J. (1988). Appl. Environ. Microbiol., 54, 5, 1131–1137.Google Scholar
  17. Peters, H.J.P.; Kerkhoff, L.P., Calls, H.J.M., Balken, M.A.J. and Mejer, E.M. (1983). DSM Research and Patents Nr. S003723. Google Scholar
  18. Shiomi, N. and Onodera, S. (1988). Agric. Biol. Chem. 52, 10, 2569–2576.Google Scholar

Copyright information

© Lonsdale Press Ltd 1994

Authors and Affiliations

  • Gaye Öngen-Baysal
    • 1
  • Ş. Suha Sukan
    • 1
  • Nikolay Vassilev
    • 2
  1. 1.Department of Food Engineering, Faculty of EngineeringThe University of EgeBornovaTurkey
  2. 2.Institute of Microbiology Bulgarian Academy SofiaSofiaBulgaria

Personalised recommendations