, Volume 86, Issue 1–3, pp 155–173 | Cite as

The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae

  • C. M. Wilke
  • E. Maimer
  • J. Adams


The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty 1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25–35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for ∼100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to ∼0.0, and the populations had became dominated by a small number of clones containing >0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. & P. W. Oeller, 1986. Structure of evolving populations of Saccharomyces cerevisiae: Adaptive changes are frequently associated with alterations involving mobile elements belonging to the Ty family. Proc. Natl. Acad. Sci. USA 83: 7124–7127.Google Scholar
  2. Adams, S. E., J. Mellor, K. Gull, R. B. Sim, M. F. Tuite, S. M. Kingsman & A. J. Kingsman, 1987. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell 49: 111–119.Google Scholar
  3. Barnett, J. A., R. W. Payne & D. Yarrow, 1983. Yeasts, characteristics and identification. Cambridge University Press, Cambridge.Google Scholar
  4. Berg, D. E. & M. M. Howe, 1989. eds. Mobile DNA. American Society for Microbiology, Washington, D.C.Google Scholar
  5. Boeke, J. D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington D.C.Google Scholar
  6. Boeke, J. D., D. J. Eichinger, D. Castrillon & G. R. Fink, 1988. The Saccharomyces cerevisiae genome contains functional and non-functional copies of transposon Ty1. Mol. Cell. Biol. 8: 1432–1442.Google Scholar
  7. Boeke, J. D., D. J. Eichinger & G. Natsoulis, 1991. Doubling Ty1 element copy number in Saccharomyces cerevisiae: host genome stability and phenotypic effects. Genetics 129: 1043–1052.Google Scholar
  8. Boeke, J. D. & D. J. Garfinkel, 1988. Yeast Ty elements as retroviruses, pp. 15–39 in Viruses of Fungi and Simple Eukaryotes, edited by Y. Koltin and M. J. Leibowitz. Marcel Dekker Inc, New York.Google Scholar
  9. Boeke, J. D., D. J. Garfinkel, C. A. Styles & G. R. Fink, 1985. Ty elements transpose through an RNA intermediate. Cell 40: 491–500.Google Scholar
  10. Boeke, J. D., C. A. Styles & G. R. Fink, 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6: 3575–3581.Google Scholar
  11. Cameron, J. R., E. Loh & R. W. Davis, 1979. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751.Google Scholar
  12. Chao, L., C. Vargas, B. B. Spear & E. C. Cox, 1983. Transposable elements as mutator genes in evolution. Nature 303: 633–635.Google Scholar
  13. Chao, L. & S. M. McBroom, 1985. Evolution of transposable elements: An IS10 insertion increases fitness in E. coli. Mol. Biol. Evol. 2: 359–369.Google Scholar
  14. Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Annu. Rev. Genet. 23: 251–287.Google Scholar
  15. Clare, J. J., M. Belcourt & P. J. Farabaugh, 1988. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty 1 transposon. Proc. Natl. Acad. Sci. USA 85: 6816–6820.Google Scholar
  16. Clare, J. J. & P. J. Farabaugh, 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82: 2829–2833.Google Scholar
  17. Clark, D. J., V. W. Bilanchone, L. J. Haywood, S. L. Dildine & S. B. Sandmeyer, 1988. A yeast sigma composite element, Ty3, has properties of a retrotransposon. J. Biol. Chem. 263: 1413–1423.Google Scholar
  18. Conover, W. J., 1971. Practical Nonparametric Statistics. John Wiley, New York.Google Scholar
  19. Cornelis, G., 1980. Transposition of Tn951 (Tnlac) and cointegrate formation are thermosensitive processes. J. Gen. Microbiol. 117: 243–247.Google Scholar
  20. Curcio, M. J., N. J. Sanders & D. J. Garfinkel, 1988. Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8: 3571–3581.Google Scholar
  21. Doolittle, W. F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.Google Scholar
  22. Eibel, H., J. Gafner, A. Stotz & Philippsen, 1980. Characterization of the yeast mobile element Ty1. Cold Spring Harbor Symp. Quant. Biol. 45: 609–617.Google Scholar
  23. Eibel, H. & P. Philippsen, 1984. Preferential integration of yeast transposable element Ty into a promoter region. Nature 307: 386–388.Google Scholar
  24. Elder, R. T., T. P.St John, D. T. Stinchcomb & R. W. Davis, 1980. Studies on the transposable element Tyl of yeast. I. RNA homologous to Ty1. Cold Spring Harbor Symp. Quant. Biol. 45: 581–584.Google Scholar
  25. Elder, R. T., E. Loh & R. W. Davis, 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80: 2432–2436.Google Scholar
  26. Errede, B., T. S. Cardillo, F. Sherman, E. Dubois, J. Deschamps & J. Wiame, 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436.Google Scholar
  27. Farabaugh, P. J. & G. R. Fink, 1980. Insertion of the eukaryotic transposable element Ty1 creates a 5 bp duplication. Nature 286: 352–356.Google Scholar
  28. Fink, G. R., J. D. Boeke & D. J. Garfinkel, 1986. The mechanism and consequences of retrotransposition. Trends Genet. 2: 118–123.Google Scholar
  29. Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.Google Scholar
  30. Fitzpatrick, B. J. & J. Sved, 1986. High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48: 89–94.Google Scholar
  31. Gafner, J., E. M.De Robertis & P. Philippsen, 1983. Delta sequences in the 5′ region of yeast tRNA genes. EMBO J. 2: 583–591.Google Scholar
  32. Gatner, J. & P. Philippsen, 1980. The yeast transposon Ty1 generates duplicates of target DNA in insertion. Nature 286: 414–418.Google Scholar
  33. Garfinkel, D. J., J. D. Boeke & G. R. Fink, 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42: 507–517.Google Scholar
  34. Garfinkel, D. J. & J. N. Strathern, 1991. Ty mutagenesis in Saccharomyces cerevisiae Meth. Enzymol. 194: 342–361.Google Scholar
  35. Giroux, C. N., J. R. A. Mis, M. K. Pierce, S. E. Kohalmi & B. A. Kunz, 1988. DNA sequence analysis of spontaneous mutations in the SUP4-o gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 978–981.Google Scholar
  36. Goebl, M. G. & T. D. Petes, 1986. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46: 983–992.Google Scholar
  37. Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.Google Scholar
  38. Hall, B. G., 1990. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5–16.Google Scholar
  39. Hansen, L. J., D. L. Chalker & S. B. Sandmeyer, 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 5245–5256.Google Scholar
  40. Hansen, L. J. & S. B. Sandmeyer, 1990. Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein. J. Virol. 64: 2599–2607.Google Scholar
  41. Iida, H., 1988. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of Ty into the 5′ coding region of the adenylate cyclase gene. Mol. Cell. Biol. 8: 5555–5560.Google Scholar
  42. Kaplan, N. L., R. R. Hudson & C. H. Langley, 1989. The ‘hitch-hiking’ effect revisited. Genetics 123: 887–899.Google Scholar
  43. Kingsman, A. J. & S. M. Kingsman, 1988. Ty: A retroelement moving forward. Cell 53: 333–335.Google Scholar
  44. Kleckner, N., 1990. Regulation of transposition in bacteria. Annu. Rev. Cell Biol. 6: 297–327.Google Scholar
  45. Klein, H. L. & T. D. Petes, 1984. Genetic mapping of Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 329–339.Google Scholar
  46. Koch, A. L., 1974. The pertinence of the periodic selection phenomenon to prokaryotic evolution. Genetics 77: 127–142.Google Scholar
  47. Kondrashov, A. S. & J. F. Crow, 1991. Haploidy or diploidy: which is better? Nature 351: 314–315.Google Scholar
  48. Kretschmer, P. J. & S. N. Cohen, 1977. Selected translocation of plasmid genes: frequency and regional specificity of translocation of the Tn3 element. J. Bacteriol. 130: 888–899.Google Scholar
  49. Kurlandzka, A., R. F. Rosenzweig & J. Adams, 1991. Identification of adaptive changes in an evolving population of Escherichia coli: the role of regulatory changes with highly pleiotropic effects. Mol. Biol. Evol. 8: 261–281.Google Scholar
  50. Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.Google Scholar
  51. Lewontin, R. C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, NY.Google Scholar
  52. Liebman, S. W. & S. Picologlou, 1988. Recombination associated with yeast retrotransposons, pp. 63–90 in Viruses of Fungi and Simple Eukaryotes, edited by Y. Koltin and M. J. Leibowitz. Marcel Dekker Inc., NY.Google Scholar
  53. Lopilato, J. & A. Wright, 1990. Mechanisms of activation of the cryptic bgl operon of Escherichia coli K12, pp. 435–444 in The Bacterial Chromosome edited by K. Drlica and M. Riley. American Society of Microbiology Publications. Washington, D.C.Google Scholar
  54. MacArthur, R. H., 1962. Some generalized theorems of natural selection. Proc. Natl. Acad. Sci. USA 231: 123–128.Google Scholar
  55. Mackay, T. F. C., 1985. Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111: 351–374.Google Scholar
  56. Mackay, T. F. C., 1986. Transposable element-induced fitness mutations in Drosophila melanogaster. Genet. Res. 48: 77–87.Google Scholar
  57. Maimer, E., 1990. Taxonomie und Oekologie von Hefen aus Frucht und Fruchtzubereitungen. Unpublished Ph.D. thesis, Technische Universität München-Weihenstephan.Google Scholar
  58. Maynard Smith, J. & J. Haigh, 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23: 25–35.Google Scholar
  59. McClanahan, T. & K. McEntee, 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4: 2356–2363.Google Scholar
  60. McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205, in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila, Springer-Verlag, New York.Google Scholar
  61. McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.Google Scholar
  62. Mellor, J., S. M. Fulton, W. W. Dobson, S. M. Kingsman & A. J. Kingsman, 1985a. A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1. Nature 313: 243–246.Google Scholar
  63. Mellor, J., A. J. Kingsman & S. M. Kingsman, 1986. Ty, an endogenous retrovirus of yeast? Yeast 2: 145–152.Google Scholar
  64. Mellor, J., M. H. Malim, K. Gull, M. F. Tiute, S. McCready, T. Dibbayawan, S. M. Kingsman & A. J. Kingsman, 1985b. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature 318: 583–586.Google Scholar
  65. Misra, S. & D. C. Rio, 1990. Cytotype control of Drosophila P element transposition: The 66 kd protein is a repressor of transposase activity. Cell 62: 269–284.Google Scholar
  66. Modi, R., L. H. Castilla, S. Puskas-Rozsa, R. B. Helling & J. Adams, 1992. Genetic changes accompanying increased fitness in evolving populations of Escherichia coli. Genetics 130: 241–249.Google Scholar
  67. Morawetz, C., 1987. Effect of irradiation and mutagenic chemicals on the generation of ADH2-constitutive mutants in yeast. Significance for the inducibility of Ty transposition. Mut. Res. 177: 53–60.Google Scholar
  68. Muller, F., K. H. Bruhl, K. Freidel, K. V. Kowallik & M. Ciriacy, 1987. Processing of Ty1 proteins and formation of Ty1 virus-like particles in Saccharomyces cerevisiae. Mol. Gen. Genet. 207: 421–429.Google Scholar
  69. Natsoulis, G., W. Thomas, M. Roghmann, F. Winston & J. D. Boeke, 1989. Transposition in Saccharomyces cerevisiae is nonrandom. Genetics 123: 269–279.Google Scholar
  70. Nevers, P., H. J. Reiff & H. Saedler, 1977. Mutations affecting IS1-mediated deletion formation in E. coli. In, DNA Insertion elements plasmids and episomes, pp. 125–128 edited by A. Bukhari, J. Shapiro and S. Adhya. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  71. Orgel, L. E. & F. H. C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.Google Scholar
  72. Oyen, T. B. & O. S. Gabrielsen, 1983. Non-random distribution of the Ty1 elements within nuclear DNA of Saccharomyces cerevisiae. Fed. Eur. Bioch. Soc. 161: 201–206.Google Scholar
  73. Paquin, C. E. & J. Adams, 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid populations. Nature 302: 495–500.Google Scholar
  74. Paquin, C. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.Google Scholar
  75. Paquin, C. & V. M. Williamson, 1986. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15°C of Saccharomyces cerevisiae strains lacking ADH1. Mol. Cell. Biol. 6: 70–79.Google Scholar
  76. Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.Google Scholar
  77. Pasyukova, E. G., E. S. Belyaeva, L. E. Ilyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.Google Scholar
  78. Pedersen, M. B., 1985. DNA sequence polymorphisms in the genus Saccharomyces. II. Analysis of the genes RDN1, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carlsberg Res. Commun. 50: 263–272.Google Scholar
  79. Pedersen, M. B., 1986. DNA sequence polymorphisms in the genus Saccharomyces. III. Restricition endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res. Commun. 51: 163–183.Google Scholar
  80. Pedersen, M. B., 1988. The use of nucleotide sequence polymorphisms and DNA karyotyping in the identification of brewer's yeast strains and in microbiological control, pp. 180–194 in Modern Methods of Plant Analysis, New Series Vol 7, Beer Analysis, edited by H. F. Linskens and J. F. Jackson. Springer-Verlag, NY.Google Scholar
  81. Perrot, P., S. Richerd & M. Valéro, 1991. Transition from haploidy to diploidy. Nature 351: 315–317.Google Scholar
  82. Philippsen, P., H. Eibel, J. Gafner & A. Stotz, 1983. Ty elements and the stability of the yeast genome, pp. 189–200 in Gene expression in Yeast. Proceedings of the Alko Yeast Symposium Helsinki, edited by M. Korhola and E. Vaisanen. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki.Google Scholar
  83. Picologlou, S., N. Brown & S. W. Liebman, 1990. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol. Cell. Biol. 10: 1017–1022.Google Scholar
  84. Picologlou, S., M.E. Dicig, P. Kovarik & S. W. Liebman, 1988. The same configuration of Ty elements promotes different types and frequencies of rearrangements in different yeast strains. Mol. Gen. Genet. 211: 272–281.Google Scholar
  85. Rolfe, M., A. Spanos & G. Banks, 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339–340.Google Scholar
  86. Rose, M. & F. Winston, 1984. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol. Gen. Genet. 193: 557–560.Google Scholar
  87. Rothstein, R., 1979. Deletions of a tyrosine tRNA gene in S. cerevisiae. Cell 17: 185–190.Google Scholar
  88. Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.Google Scholar
  89. Sawyer, S. & D. L. Hartl, 1986. Distribution of transposable elements in prokaryotes. Theoret. Pop. Biol. 30: 1–16.Google Scholar
  90. Sawyer, S. A., D. E. Dykhuizen, R. F. Dubose, L. Green, T. Mutangadura-Mhlanga, D. F. Wolczyk & D. L. Hartl, 1987. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115: 51–63.Google Scholar
  91. Scherer, S., C. Mann & R. W. Davis, 1982. Reversion of a promoter delection in yeast. Nature 298: 815–819.Google Scholar
  92. Shrimpton, A. E., T. F. C. Mackay & A. J. Leigh Brown, 1990. Transposable element-induced response to artificial selection in Drosophila melanogaster, molecular analysis of selected lines. Genetics 125: 803–811.Google Scholar
  93. Simchen, G., F. Winston, C. A. Styles & G. R. Fink, 1984. Ty mediated gene expression of the LYS2 HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81: 2431–2434.Google Scholar
  94. Stahl, F. W., 1988. Bacterial genetics. A unicorn in the garden. Nature 335: 112–113.Google Scholar
  95. Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.Google Scholar
  96. Stucka, R., H. Lochmuller & H. Feldmann, 1989. Ty4, a novel low-copy number element in Saccharomyces cerevisiae: one copy is located in a cluster of Ty elements and tRNA genes. Nuc. Acids Res. 17: 4993–5001.Google Scholar
  97. Syvanen, M., 1984. The evolutionary implications of mobile genetic elements. Ann. Rev. Genet. 18: 271–293.Google Scholar
  98. Taguchi, A. K. W., M. Ciriacy & E. T. Young, 1984. Carbon source dependence of transposable element-associated gene activation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 61–68.Google Scholar
  99. Toh-e, Y., Y. Kaneko, J. Akimaru & Y. Oshima, 1983. An insertion mutation associated with constitutive expression of repressible acid phosphatese in Saccharomyces cerevisiae. Mol. Gen. Genet. 191: 339–346.Google Scholar
  100. Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophila suppressor of sable locus occur in DNase I hypersensitive subregions of 5′-transcribed nontranslated sequences. Genetics 126: 1071–1982.Google Scholar
  101. Warmington, J. R., R. B. Waring, C. S. Newlon, K. J. Indge & S. G. Oliver, 1985. Nucleotide sequence characterization of Ty 1–17, a class II transposon from yeast. Nuc. Acids Res. 13: 6679–6693.Google Scholar
  102. Weinstock, K. G., M. F. Mastrangelo, T. J. Burkett, D. J. Garfinkel & J. N. Strathern, 1990. Multimeric arrays of the yeast retrotransposon Ty. Mol. Cell. Biol. 10: 2882–2892.Google Scholar
  103. Wilke, C. M. & J. Adams, 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 31–42.Google Scholar
  104. Wilke, C. M., S. H. Heidler, N. Brown & S. W. Liebman, 1989. Analysis of yeast retrotransposon Ty insertions at the CAN1 locus. Genetics 123: 655–665.Google Scholar
  105. Williamson, V. M., E. T. Young & M. Ciriacy, 1981. Transposable elements associated with constitutive expression of alcohol dehydrogenase II. Cell 23: 605–614.Google Scholar
  106. Wilson, W., M. H. Malim, J. Mellor, A. J. Kingsman & S. M. Kingsman, 1986. Expression strategies of the yeast retrotransposon Ty: a short sequence directs ribosomal frameshifting. Nuc. Acids Res. 14: 7001–7016.Google Scholar
  107. Xu, H. & J. D. Boeke, 1990. Host genes that influence transposition in yeast: the abundance of a rate tRNA regulates Ty1 transposition frequency. Proc. Natl. Acad. Sci. USA 87: 8360–8364.Google Scholar
  108. Yougren, S. D., J. D. Boeke, N. J. Sanders & D. J. Garfinkel, 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8: 1421–1431.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • C. M. Wilke
    • 1
  • E. Maimer
    • 1
  • J. Adams
    • 1
  1. 1.Department of BiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations