Genetica

, Volume 86, Issue 1–3, pp 113–126 | Cite as

The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster

  • T. W. Lyttle
  • D. S. Haymer
Article

Abstract

Evidence from in situ hybridizations of DNA from the transposable element hobo to polytene salivary gland chromosome squashes reveals that hobo occupies both cytological breakpoints of three of four endemic inversions sampled from natural populations of Drosophila melanogaster in the Hawaiian islands. The fourth endemic inversion has a single hobo insert at one breakpoint. Cosmopolitan inversions on the same chromosomes do not show this association. Frequencies of both endemic and cosmopolitan inversions in Hawaiian populations fall in ranges typical for natural populations of D. melanogaster sampled worldwide, suggesting that these results may be typical of other regions besides Hawaii. This appears to be the first direct demonstration that transposable elements are responsible for causing specific rearrangements found in nature; consequently, it is also the first direct demonstration that chromosome rearrangements can arise in nature in a manner predicted by results of hybrid dysgenic crosses in the laboratory. Possible population genetic and evolutionary consequences are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajioka, J. W. & W. F. Eanes, 1989. The accumulation of Pelements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.Google Scholar
  2. Aquadro, C. F., S. F. Desse, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.Google Scholar
  3. Ashburner, M., 1989. Drosophila-A Laboratory Handbook and Manual, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.Google Scholar
  4. Ashburner, M. & F. Leumeunier, 1976. Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc. R. Soc. Lond. B. 193: 137–157.Google Scholar
  5. Ault, J. G., Chromosome rearrangement patterns of an SD chromosome (SDKona-2) in Drosophila melanogaster caused by hybrid dysgenesis. Chromosoma.Google Scholar
  6. Ault, J. G. & F. Dumapias, 1988. Spontaneous chromosome rearrangements arising in an SD chromosome of Drosophila melanogaster from nature. Genome 30: s31.Google Scholar
  7. Belyaeva, E. S., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.Google Scholar
  8. Berg, R. L., 1974. A simultaneous mutability arise at the singed locus in two out of three Drosophila melanogaster populations studied in 1973. Dros. Inf. Serv. 51: 100–101.Google Scholar
  9. Biémont, C., 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.Google Scholar
  10. Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the Mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.Google Scholar
  11. Biémont, C. & C. Gautier, 1988. Localization polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity.Google Scholar
  12. Biémont, C., C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.Google Scholar
  13. Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.Google Scholar
  14. Blackman, R. K. & W. M. Gelbart, 1989. The transposable element hobo of Drosophila melanogaster, pp. 523–529 in: Mobile DNA, edited by D. E. Berg and M. M. Howe, American Society for Microbiology Publications, Washington, D.C.Google Scholar
  15. Blackman, R. K., R. Grimalia, M. M. D. Koehler & W. M. Gelbart, 1987. Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497–505.Google Scholar
  16. Boussy, I. A., M. J. Healy, J. G. Oakeshott & M. G. Kidwell, 1988. Molecular analysis of the P-M gonadal dysgenesis cline in Eastern Australian Drosophila melanogaster. Genetics 119: 889–902.Google Scholar
  17. Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in: Mobile Genetic elements, edited by J. A. Shapiro, Academic Press, New York.Google Scholar
  18. Bucheton, A., R. Paro, H. M. Sang, A. Pelisson & D. J. Finnegan, 1984. The molecular basis of I-R hybrid dysgenesis: identification, cloning and properties of the I factor. Cell 38: 155–163.Google Scholar
  19. Bucheton, A., M. Simonelig, C. Vaury & M. Crozatier, 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322: 650–652.Google Scholar
  20. Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.Google Scholar
  21. Charlesworth, B. & A. Lapid, 1989. A study of ten families of transposable elements of X chromosomes from a population of D. melanogaster. Genet. Res. 54: 112–125.Google Scholar
  22. Coyne, J. A., 1989. A test of the role of meiotic drive in fixing a pericentric inversion. Genetics 123: 241–243.Google Scholar
  23. Daniels, S. B., A. Chovnick & I. A. Boussy, 1990. Distribution of hobo transposable elements in the genus Drosophila. Mol. Biol. Evol. 7: 589–606.Google Scholar
  24. Dowsett, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc. Natl. Acad. Sci. 79: 4570–4574.Google Scholar
  25. Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331: 368–370.Google Scholar
  26. Engels, W. R., 1983. The P family of transposable elements in Drosophila. Ann. Rev. Genet. 17: 315–344.Google Scholar
  27. Engels, W. R., 1989. P elements in Drosophila, pp. 437–484 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.Google Scholar
  28. Engels, W. R. & C. R. Preston, 1981. Identifying P factors in Drosophila by means of chromosome breakage hotspots. Cell 26: 421–428.Google Scholar
  29. Engels, W. R. & C. R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.Google Scholar
  30. Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in: Mobile DNA, edited by D. Berg and M. Howe, American Society for Microbiology Publications, Washington, D.C.Google Scholar
  31. Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.Google Scholar
  32. Green, M. M., 1976. Mutable and mutator loci, pp. 929–946 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, London/New York.Google Scholar
  33. Haigh, J., 1978. The accumulation of deleterious genes in a population — Muller's ratchet. Theor. Pop. Biol. 14: 251–267.Google Scholar
  34. Hartl, D. L. & Y. Hiraizumi, 1976. Segregation distortion, pp. 615–666 in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.Google Scholar
  35. Hedrick, P. W., 1981. The establishment of chromosomal variants. Evolution 35: 322–332.Google Scholar
  36. Hinton, C., 1979. Two mutators and their suppressors in D. ananassae. Genetics 92: 1153–1171.Google Scholar
  37. Ish-Horowicz, D., 1982. Transposable elements, hybrid incompatibility and speciation. Nature 229: 676–677.Google Scholar
  38. Ives, P. T., 1950. The importance of mutation rate genes in evolution. Evolution 4: 236–252.Google Scholar
  39. Jackson, M. S., D. M. Black & G. A. Dover, 1988. Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster.Google Scholar
  40. Knibb, W. R., J. G. Oakeshott & J. B. Gibson, 1981. Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australian populations. Genetics 98: 833–847.Google Scholar
  41. Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33; 234–251.Google Scholar
  42. Langley, C. H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–235.Google Scholar
  43. Lefevre, G., 1976. A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands, pp. in: The Genetics and Biology of Drosophila, edited by M. Ashburner and E. Novitski, Academic Press, New York/London.Google Scholar
  44. Leigh-Brown, A. J. & J. E. Moss, 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.Google Scholar
  45. Lemeunier, F., J. R. David, L. Tsacas & M. Ashburner, 1986. The melanogaster species group, pp. 148–257 in: The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson and J. N. J. Thompson, Academic Press, New York/London.Google Scholar
  46. Levitan, M., 1962. Spontaneous chromosome aberrations in Drosophila robusta. Proc. Natl. Acad. Sci. 48: 930–937.Google Scholar
  47. Lewis, A. P. & J. F. Y. Brookfield, 1987. Movement of transposable elements other than P elements in a P-M hybrid dysgenic cross. Mol. Gen. Genet. 208: 506–510.Google Scholar
  48. Lim, J., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.Google Scholar
  49. Louis, C. & G. Yannopoulos, 1988. The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster, pp. 205–250 in: Oxford Survey in Eukaryotic Genes, edited by D. J. Finnegan, Oxford University Press, Oxford.Google Scholar
  50. Lyttle, T. W., 1989. Is there a role for meiotic drive in karyotype evolution?, pp. in: Genetics, Speciation, and the Founder Principle, edited by L. V. Giddings, K. Y. Kaneshiro and W. W. Anderson, Oxford University Press. New York/Oxford.Google Scholar
  51. Lyttle, T. W., 1991. Segregation distorters. Ann. Rev. Genet. 25: 511–557.Google Scholar
  52. Maniatis, T., E. F. Fritsch & J. Sambrook, 1982. Molecular Cloning. A laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  53. Mettler, L. E., R. A. Voelker & T. Mukai, 1977. Inversion clines in natural populations of Drosophila melanogaster. Genetics 87: 169–176.Google Scholar
  54. Monastirioti, M., P. Hatzopoulos, N. Stamatis, G. Yannopoulos & C. Louis, 1988. Cohabitation of KP and full-length P elements in the genome of strains of Drosophila melanogaster inducing P-M-like hybrid dysgenesis. Mol. Gen. Genet. 215: 94–99.Google Scholar
  55. Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.Google Scholar
  56. Montgomery, W. A., B. Charlesworth & C. B. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.Google Scholar
  57. Naveira, H. & A. Fontdevila, 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94.Google Scholar
  58. Pascual, L. & G. Périquet, 1991. Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 8: 282–296.Google Scholar
  59. Périquet, G., M. H. Hamelin, Y. Bigot & K. Hu, 1989. Presence of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Genet. Sel. Evol. 21: 107–111.Google Scholar
  60. Périquet, G., M. H. Hamelin, R. Kalmes & J. Eeken, 1990. Hobo elements and their deletion-derivative sequences in D. melanogaster and its sibling species D. simulans, D. mauritiana and D. sechellia. Genet. Sel. Evol. 22: 393–402.Google Scholar
  61. Potter, S. S., W. J. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.Google Scholar
  62. Ronsseray, S. & D. Anxolabéhère, 1987. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster, Chromosoma 94: 433–440.Google Scholar
  63. Rubin, G. M., 1983. Dispersed repetitive DNAs in Drosophila, pp. 329–361 in. Mobile Genetic Elements, edited by J. A. Shapiro, Academic Press, New York.Google Scholar
  64. Simmons, M. G., 1986. Gonadal dysgenesis determinants in a natural population of Drosophila melanogaster. Genetics 114: 897–918.Google Scholar
  65. Stalker, H. D., 1980. Chromosome studies in wild populations of Drosophila melanogaster. II. Relationship of inversion frequencies to latitude, season, wing loading and flight activity. Genetics 95: 211–223.Google Scholar
  66. Stamatis, N., M. Monastirioti, G. Yannopoulos & C. Louis, 1989. The P-M and the 23.5 MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123: 379–387.Google Scholar
  67. Streck, R. D., J. E. MacGaffey & S. K. Beckendorf, 1986. The structure of hobo transposable elements and their site of insertion. EMBO J. 5: 3615–3623.Google Scholar
  68. Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphisms in the chromosomal locations of elements of the 412, copia, and 297 dispersed repeat families in Drosophila. Cell 17: 429–439.Google Scholar
  69. Temin, R. G., B. Ganetzky, P. A. Powers, T. W. Lyttle, S. Pimpinelli, C.-I. Wu & Y. Hiraizumi, 1991. Segregation distorter (SD) in Drosophila melanogaster. Am. Nat. 137: 287–331.Google Scholar
  70. Throckmorton, L. H., 1975. The phylogeny, ecology and geography of Drosophila, pp. 421–469 in. Handbook of Genetics, vol. 3: Invertebrates of genetic interest, edited by R. C. King, Plenum, New York.Google Scholar
  71. Voelker, R. A., 1974. The genetics and cytology of a mutator factor in Drosophila melanogaster. Mut. Res. 22: 265–276.Google Scholar
  72. Voelker, R. A., T. Mukai & F. M. Johnson, 1977. Genetic variation in populations of Drosophila melanogaster from the western United States. Genetica 47: 143–148.Google Scholar
  73. White, M. J. D., 1978. Modes of Speciation, W. H. Freeman, San Francisco.Google Scholar
  74. Yamaguchi, O. & T. Mukai, 1974. Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster. Genetics 78: 1209–1221.Google Scholar
  75. Yannapoulos, G. & N. Stamatis, 1987. Positive correlation between the occurrence of chromosome breakage and the induction of point mutations associated with male recombination 31.1 MRF system of hybrid dysgenesis in Drosophila melanogaster. Mutat. Res. 176: 37–45.Google Scholar
  76. Yannopoulos, G., N. Stamatis & J. C. J. Eeken, 1986. Differences in the cytotype and hybrid dysgenesis inducing abilities of different P strains of Drosophila melanogaster. Experientia 42: 1283–1285.Google Scholar
  77. Yannopoulos, G., N. Stamatis, M. Monastirioti, P. Hatzopoulos & C. Louis. 1987. Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF Cell 49: 487–495.Google Scholar
  78. Yannopoulos, G., A. Zacharopoulou & N. Stamatis, 1982. Unstable chromosome rearrangements associated with male recombination in Drosophila melanogaster. Mutat. Res. 96: 41–51.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • T. W. Lyttle
    • 1
  • D. S. Haymer
    • 1
  1. 1.Department of Genetics and Molecular BiologyUniversity of HawaiiHonoluluUSA

Personalised recommendations