, Volume 86, Issue 1–3, pp 99–111 | Cite as

Natural genetic engineering in evolution

  • J. A. Shapiro


The results of molecular genetics have frequently been difficult to explain by conventional evolutionary theory. New findings about the genetic conservation of protein structure and function across very broad taxonomic boundaries, the mosaic structure of genomes and genetic loci, and the molecular mechanisms of genetic change all point to a view of evolution as involving the rearrangement of basic genetic motifs. A more detailed examination of how living cells restructure their genomes reveals a wide variety of sophisticated biochemical systems responsive to elaborate regulatory networks. In some cases, we know that cells are able to accomplish extensive genome reorganization within one or a few cell generations. The emergence of bacterial antibiotic resistance is a contemporary example of evolutionary change; molecular analysis of this phenomenon has shown that it occurs by the addition and rearrangement of resistance determinants and genetic mobility systems rather than by gradual modification of pre-existing cellular genomes. In addition, bacteria and other organisms have intricate repair systems to prevent genetic change by sporadic physicochemical damage or errors of the replication machinery. In their ensemble, these results show that living cells have (and use) the biochemical apparatus to evolve by a genetic engineering process. Future research will reveal how well the regulatory systems integrate genomic change into basic life processes during evolution.


Genetic Engineering Genetic Change Repair System Mobility System Genetic Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adzumi, A. & K. Mizuuchi, 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257–266.Google Scholar
  2. Akam, M., 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57: 347–349.Google Scholar
  3. Alt, F. W., T. K. Blackwell & G. D. Yancopoulos, 1987. Development of the primary antibody repertoire. Science 238: 1079–1087.Google Scholar
  4. Baker, M. E. & M. H. Saier Jr., 1990. A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator. Cell 60: 185–186.Google Scholar
  5. Beerman, S., 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344.Google Scholar
  6. Beerman, S. & G. F. Meyer, 1980. Chromatin rings as products of chromatin diminution in Cyclops. Chromosoma 77: 277–283.Google Scholar
  7. Berg, D. E., 1989. Transposon Tn5. pp. 185–210 in Mobile DNA (D.E. Berg and M. M. Howe, eds) American Society for Microbiology.Google Scholar
  8. Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.Google Scholar
  9. Blackburn, E. H., 1991. Structure and function of telomeres. Nature 350: 569–573.Google Scholar
  10. Blackburn, E. H. & J. W. Szostak, 1984. The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53: 163–194.Google Scholar
  11. Blackwell, T. K. & F. W. Alt, 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. Ann. Rev. Genet. 23: 605–636.Google Scholar
  12. Blake, C. C. F., 1985. Exons and the evolution of proteins. Int. Rev. Cytol. 93: 149–185.Google Scholar
  13. Boeke, J. D. & V. Corces, 1989. Transcription and reverse transcription of retrotransposons. Ann. Rev. Microbiol. 43: 403–434.Google Scholar
  14. Boveri, T., 1887. Über Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2: 688–693.Google Scholar
  15. Bregliano, J.-C., & M. G. Kidwell, 1983. Hybrid dysgenesis determinants. pp. 363–410 in Mobile Genetic Elements (J. A. Shapiro, ed.) Academic Press.Google Scholar
  16. Brosius, J., 1991. Retroposons-Seeds of evolution. Science 251: 753.Google Scholar
  17. Cairns, J., J. Overbaugh & S. Miller, 1988. The origin of mutants. Nature 335: 142–145.Google Scholar
  18. Casadesús, J. & J. Roth, 1989. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Molec. Gen. Genet. 216: 210–216.Google Scholar
  19. Chandler, V. & V. Walbott, 1986. DNA modification of a maize transposable element correlated with loss of activity. Proc. Nat. Acad. Sci. USA 83: 1767–1771.Google Scholar
  20. Deininger, P. L., 1989. SINES: Short interspersed repeated DNA elements in higher eucaryotes. pp. 619–636 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.Google Scholar
  21. Donehower, L. & D. Gillespie, 1979. Restriction site periodicities in highly repetitive DNA of primates. J. Mol. Biol. 134: 805–834.Google Scholar
  22. Dover, G. A., 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.Google Scholar
  23. Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.Google Scholar
  24. Engels, W. R., 1989. P elements in Drosophila melanogaster. pp. 437–484 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.Google Scholar
  25. Errede, B., T. S. Cardillo, G. Wever & F. Sherman, 1981. ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward conjugation functions and their formation by insertions of Ty1 repetitive elements. Cold Spr. Harb. Symp. Quant. Biol. 45: 593–607.Google Scholar
  26. Finnegan, D. J., 1989. The I factor and I-R Hybrid dysgenesis in Drosophila melanogaster, pp. 503–518 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  27. Foster, T. J., 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361–409.Google Scholar
  28. Galas, D. & M. Chandler, 1989. Bacterial insertion sequences. pp. 109–162 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  29. Gall, J., 1986. The Molecular Biology of Ciliated Protozoa. Academic Press, Orlando.Google Scholar
  30. Gibbs, C. P., B.-Y. Reimann, E. Schultz, A. Kaufmann, R. Hass & T. F. Meyer, 1989. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651–652.Google Scholar
  31. Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.Google Scholar
  32. Glasgow, A. C., K. T. Hughes & M. I. Simon, 1989. Bacterial DNA inversion systems, pp. 637–660 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  33. Goff, S. A., T. M. Klein, B. A. Roth, M. E. Fromm, K. C. Cone, J. P. Radicella & V. L. Chandler, 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.Google Scholar
  34. Gottesman, S., 1984. Bacterial regulation: global regulatory networks. Ann. Rev. Genet. 18: 415–441.Google Scholar
  35. Goodman, S. D. & J. J. Scocca, 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Nat. Acad. Sci. USA 85: 6982–6986.Google Scholar
  36. Hough, N., 1983. Has terminal transferase finally made it as a mutator of antibody genes? Trends Biochem. Sci.: 227–228.Google Scholar
  37. Greslin, A. F., D. M. Prescott, Y. Oka, S. H. Loukin & J. C. Chappell, 1989. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. Proc. Nat. Acad. Sci. USA 86: 6264–6268.Google Scholar
  38. Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.Google Scholar
  39. Heffron, F., 1983. Tn3 and its relatives, pp. 223–260 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.Google Scholar
  40. Helinski, D. R., S. N. Cohen, D. B. Clewell, D. A. Jackson & A. Hollaender, 1985. Plasmids in Bacteria. Plenum, New York.Google Scholar
  41. Highton, P. J., Y. Chang & R. J. Myers, 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Molec. Microbiol. 4: 1329–1340.Google Scholar
  42. Hoopes, B. C. & W. R. McClure, 1987. Strategies in regulation of transcription initiation, pp. 1231–1240, In Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al., American Society for Microbiology, Washington.Google Scholar
  43. Hutchison, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINES and related retroposons: Long interspersed repeated sequences in the eucaryotic genome, pp. 593–618 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  44. Iida, S., J. Meyer & W. Arber, 1983. Prokaryotic IS Elements, pp. 159–221 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.Google Scholar
  45. Inouye, S., T. Franceschini & M. Inouye, 1983. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Nat. Acad. Sci. USA 80: 6829–6833.Google Scholar
  46. Johnson, P. F. & S. L. McKnight, 1989. Eukaryotic transcriptional regulatory proteins. Ann. Rev. Biochem. 58: 799–839.Google Scholar
  47. Klar, A. J. S., 1989. The interconversion of yeast mating type: Saccharomyces cerevisae and Schizosaccharomyces pombe, pp. 671–692 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  48. Kleckner, N., 1989. Transposon Tn10, pp. 227–268 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  49. Kushner, S. R., 1987. DNA repair. In Escherichia coli and Salmonella typhymurium (F. C. Neidhardt et al., eds), American Society for Microbiology, 1044–1053.Google Scholar
  50. Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.Google Scholar
  51. Lee, M. G. & P. Nurse, 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.Google Scholar
  52. Linquist, S. & E. A. Craig, 1988. The heat-shock proteins. Ann. Rev. Genet. 22: 631–677.Google Scholar
  53. Marinus, M. G., 1987. Methylation of DNA, pp. 697–702 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.Google Scholar
  54. McCann, J., N. E. Spingarn, J. Kobori & B. N. Ames, 1975. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72: 979–983.Google Scholar
  55. McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. USA 36: 344–355.Google Scholar
  56. McClintock, B., 1951. Chromosome organization and genic expression. Cold Spr. Harb. Symp. Quant. Biol. 16: 13–47.Google Scholar
  57. McClintock, B., 1956. Controlling elements and the gene. Cold Spr. Harb. Symp. Quant. Biol. 21: 197–216.Google Scholar
  58. McClintock, B., 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.Google Scholar
  59. McClintock, B., 1967. Genetic systems regulating gene expression during development. Develop. Biol. Suppl. 1: 84–112.Google Scholar
  60. McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.Google Scholar
  61. McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.Google Scholar
  62. McGinnis, N., M. A. Kuziora & W. McGinnis, 1990. Human Hox-4.2 and Drosophila Deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63: 969–976.Google Scholar
  63. Mercier, J., J. Lachapelle, F. Couture, M. Lafond, G. Vezina, M. Boissinot & R. C. Levesque, 1990. Structural and functional characterization of tnpI, a recombinase locus in Tn21 and related β-lactamase transposons. J. Bacteriol. 172: 3745–3757.Google Scholar
  64. Meyer, T. F. 1987. Molecular basis of surface antigen variation in Neisseria. Trends in Genet. 3: 319–324.Google Scholar
  65. Mittler, J. & R. E. Lenski, 1990. Further experiments on excisions of Mu from Escherichia coli MCS2 cast doubt on directed mutation hypothesis. Nature 344: 173–175.Google Scholar
  66. Modrich, P., 1987. DNA mismatch correction. Ann. Rev. Biochem. 56: 435–466.Google Scholar
  67. Müller, M. M., T. Gerster & W. Schaffner, 1988. Enhancer sequences and the regulation of gene transcription. Eur. J. Biochem. 176: 485–495.Google Scholar
  68. Peschke, V. M., R. L. Phillips & B. G. Gengenbach, 1987. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807.Google Scholar
  69. Ptashne, M., 1986. A Genetic Switch. Cell/Blackwell, Cambridge MA and Palo Alto.Google Scholar
  70. Riley, M. & S. Krawiec, 1987. Genome organization, pp. 967–981 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.Google Scholar
  71. Rogers, J., 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93: 231–279.Google Scholar
  72. Rosenfeld, M. G., C. K. Glass, S. Adler, E. B. Crenshaw III, X. He, S. A. Lira, H. P. Elsholtz, H. J. Mangalam, J. M. Holloway, C. Nelson, V. R. Albert & H. A. Ingraham, 1989. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression. Cold Spr. Harb. Symp. Quant. Biol. 53: 545–556.Google Scholar
  73. Sadowski, P., 1986. Site-specific recombinases: Changing partners and doing the twist. J. Bacteriol. 165: 341.Google Scholar
  74. Scocca, J. J., 1990. The role of transformation in the variability of the Neisseria gonorrhoeae cell surface. Molec. Microbiol. 4: 321–327.Google Scholar
  75. Seifert, H. S., R. A. Ajioka, C. Marchal, P. F. Sparling & M. So, 198. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336: 392–395.Google Scholar
  76. Shapiro, J. A., 1977. DNA insertion elements and the evolution of chromosome primary structure. Trends in Biochem. Sci. 2: 622–627.Google Scholar
  77. Shapiro, J. A., 1983. Mobile Genetic Elements. Academic Press, New York.Google Scholar
  78. Shapiro, J., 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.Google Scholar
  79. Shapiro, J. A., 1991. Genomes as smart systems. Genetica 84: 3–4.Google Scholar
  80. Shapiro, J. A., A. I. Bukhari & Adhya, 1977. New Pathways in the evolution of chromosome structure, pp. 3–13 in DNA Insertion Elements, Plasmids and Episomes, edited by A. I. Bukhari, J. A. Shapiro and S. Adhya. Cold Spring Harbor Press.Google Scholar
  81. Shapiro, J. A. & D. Leach, 1990. Action of a transposable element in coding sequence fusions. Genetics 126: 293–299.Google Scholar
  82. Smith, C. W. J., J. G. Patton & B. Nadal-Ginard, 1989. Alternative splicing in the control of gene expression. Ann. Rev. Genet. 23: 527–577.Google Scholar
  83. Smith, H. O., D. B. Danner & R. A. Reich, 1981. Genetic transformation. Ann. Rev. Biochem. 50: 41–68.Google Scholar
  84. Stahl, F. W., 1979. Special sites in generalized recombination. Ann. Rev. Genet. 13: 7–24.Google Scholar
  85. Stock, J. B., A. M. Stock & J. M. Mottonen, 1990. Signal transduction in bacteria. Nature 344: 395–400.Google Scholar
  86. Swanson, J. & J. M. Koomey, 1989. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae, pp. 743–762 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  87. Trifonov, E. N. & V. Brendel, 1986. GNOMIC: A Dictionary of Genetics Codes Balaban, Philadelphia.Google Scholar
  88. Walker, G. C., 1987. The SOS response of Escherichia coli, pp. 1346–1357 in Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.Google Scholar
  89. Watanabe, T., 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87–115.Google Scholar
  90. Weiner, A. M., P. L. Deininger & A. Efstratiadis. 1986. Nonviral retroposons: Genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Ann. Rev. Biochem. 55: 631–661.Google Scholar
  91. Willets, N. S. & B. Wilkins, 1984. Processing of DNA during bacterial conjugation. Microbiol. Rev. 48: 24–41.Google Scholar
  92. Yao, M.-C., 1989. Site-specific chromosome breakage and DNA deletion in ciliates, pp. 715–734 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.Google Scholar
  93. Zakian, V., 1989. Structure and function of telomeres. Ann. Rev. Genet. 23: 579–604.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • J. A. Shapiro
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations