Genetica

, Volume 85, Issue 3, pp 241–247 | Cite as

Quantitative nuclear DNA differences associated with genome evolution in Guizotia (Compositae)

  • S. C. Hiremath
  • H. N. Murthy
  • S. S. Salimath
Article

Abstract

The present communication deals with 2C nuclear genome size variation in a fairly small genus Guizotia. Twenty-four accessions belonging to six species, out of seven known, were analysed in order to elucidate the extent of DNA variation both at an intra—as well as interspecific level. At the intraspecific level none of the species exhibited significant differences in their genome size. Between the species, the 2C DNA amounts ranged from 3.61 pg in G. reptans to 11.37 pg in G. zavattarii; over three-fold DNA variation is evident. Apparently these interspecific DNA differences have been achieved independent of the numerical chromosomal change(s), as all the Guizotias share a common chromosome number 2n=2x=30. The cultivated oilseed crop, G. abyssinica (7.57 pg), has accommodated nearly 78% extra DNA in its chromosome complement during the evolutionary time scale of its origin and domestication from the wild progenitor G. schimperi (4.25 pg). The extent of genomic DNA difference(s) between the species has been discussed in the light of their interrelationships and diversity.

Key words

Compositae DNA amount evolution Guizotia karyotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baagoe, J., 1974. The genus Guizotia (Compositae). A taxonomic revision. Bot. Tidsskrift 69: 1–39.Google Scholar
  2. Bennett, M. D., 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. Roy. Soc. London, B 181: 109–135.Google Scholar
  3. Bennett, M. D., 1985. Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics, pp. 283–302 in Plant Genetics, edited by M. Freeling. Alan R. Liss. Inc. New York.Google Scholar
  4. Britten, R. J. & E. H. Davidson, 1971. Repetitive and nonrepetitive DNA sequences and a speculation on the origin of evolutionary novelty. Quart. Rev. Biol. 46: 111–138.Google Scholar
  5. Britten, R. J. & D. N. Kohne, 1968. Repeated sequence in DNA. Science 161: 529–540.Google Scholar
  6. Flavell, R. B., 1986. Repetitive DNA and chromosome evolution in plants. Phil. Trans. Roy. Soc. London, B 312: 227–242.Google Scholar
  7. Flavell, R. B., M. D. Bennett, J. B. Smith & D. B. Smith, 1974. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12: 257–269.Google Scholar
  8. Geber, G. & G. Hasibeder, 1980. Cytophotometrische Bestimmung Von. DNA mangen: Vergelichiciner neuen DAPI-Fluroeszenz method mit feulgen absorption photometric microse. Acta Suppl. 4: 31–35.Google Scholar
  9. Grant, W. F., 1987. Genome differentiation in higher plants, pp. 9–32 in Differentiation Patterns in Higher Plants, edited by K. M. Urbanska. Academic Press, London.Google Scholar
  10. Greilhuber, J. & F. Ehrendorfer, 1988. Karyological approaches to plant taxonomy. ISI Atlas Sci.: Plants & Animals 1: 289–297.Google Scholar
  11. Hiremath, S. C. & H. N. Murthy, 1991. Cytogenetical studies in Guizotia (Asteraceae). Caryologia (In press).Google Scholar
  12. Hiremath, S. C. & H. N. Murthy, 1988. Domestication of niger (Guizotia abyssinica). Euphytica 37: 225–228.Google Scholar
  13. Hiremath, S. C. & H. N. Murthy, 1986a. Genome homology and origin of Guizotia abyssinica (niger). J. Ind. Bot. Soc. Suppl. 65: 86–87.Google Scholar
  14. Hiremath, S. C. & H. N. Murthy, 1986b. The structure, stability and meiotic behaviour of B-chromosome in Guizotia scabra (Vis.) Chiov. ssp. scabra (Compositae). Caryologia 39: 397–402.Google Scholar
  15. Hiremath, S. C. & S. S. Salimath, 1991. Quantitative nuclear DNA changes in Eleusine (Gramineae). Pl. Syst. Evol. 178: 225–233.Google Scholar
  16. Jones, R. N. & L. M. Brown, 1976. Chromosome evolution and DNA variation in Crepis. Heredity 36: 91–104.Google Scholar
  17. Kenton, A. 1984. Chromosome evolution in the Gibasis linearis group (Commelinaceae) III. DNA variation, chromosome evolution, and speciation in G. venustula and G. heterophylla. Chromosoma 90: 303–310.Google Scholar
  18. Murthy, H. N. (Niranjana Murthy, H.), 1987. Cytogenetical studies in Guizotia Cass. (Compositae). Ph.D. Thesis, Karnatak University, Dharwad, India.Google Scholar
  19. Nagl, W. & F. Ehrendorfer, 1973. Chromosome size, and DNA content in three species of Asteraceae—Anthemideae. Oesterr. Bot. Z. 121: 165–169.Google Scholar
  20. Narayan, R. K. J., 1983. Chromosome changes in the evolution of Lathyrus species, pp. 243–250 in Kew Chromosome Conference II, edited by P. E. Brandham and M. D. Bennett. George Allen & Unwin, London.Google Scholar
  21. Ohri, D. & T. N. Khoshoo, 1987. Nuclear DNA content in the genus Ficus (Moraceae). Pl. Syst. Evol. 156: 1–4.Google Scholar
  22. Ohri, D. & T. N. Khoshoo, 1986. Plant DNA contents and systematics, pp. 1–9 in DNA Systematics—Plants. Vol. II edited by S. K. Datta. CRC Press, Inc. Florida.Google Scholar
  23. Parida, A., S. N. Raina & R. K. J. Narayan, 1990. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82: 125–133.Google Scholar
  24. Price, H. J., 1976. Evolution of DNA content in higher plants. Bot. Rev. 42: 27–52.Google Scholar
  25. Price, H. J., 1988a. Nuclear DNA content variation within angiosperm species. Evol. Trends Plants 2: 53–60.Google Scholar
  26. Price, H. J., 1988b. DNA content variation among higher plants. Ann. Missouri Bot. Gard. 75: 1248–1257.Google Scholar
  27. Price, H. J. & K. Bachmann, 1975. DNA content and evolution in the Microseridineae. Am. J. Bot. 62: 262–267.Google Scholar
  28. Raina, S. N., 1990. Genome organization and evolution in the genus Vicia, pp. 183–201 in Biological Approaches and Evolutionary Trends in Plants, edited by S. Kawano. Academic Press, London.Google Scholar
  29. Rees, H. & M. H. Hazarika, 1967. Chromosome evolution in Lathyrus, pp. 158–165 in Chromosomes Today edited by C. D. Darlington. Plenum Press, New York.Google Scholar
  30. Rees, H. & R. N. Jones, 1972. The origin of the wide species variation in nuclear DNA content. Int. Rev. Cytol. 32: 53–92.Google Scholar
  31. Sims, L. E. & H. J. Price, 1985. Nuclear DNA content variation in Helianthus (Asteraceae). Am. J. Bot. 72: 1213–1219.Google Scholar
  32. Smith, G. P., 1976. Evolution of repeated sequences by unequal cross-over. Science 191: 528–535.Google Scholar
  33. Solbrig, O. T., 1977. Chromosomal cytology and evolution in the family Compositae, pp. 267–281 in The Biology and Chemistry of the Compositae Vol. I edited by V. H. Heywood, J. V. Harborne & B. L. Turner. Academic Press, New York.Google Scholar
  34. Van't Hof, J., 1965. Relationship between mitotic cycle duration, S period duration and average rate of DNA synthesis in the root meristem cells of several plants. Exp. Cell. Res. 39: 48–58.Google Scholar
  35. Walbot, V. & C. A. Cullis, 1985. Rapid genomic change in higher plants. Ann. Rev. Plant Physiol. 36: 367–396.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • S. C. Hiremath
    • 1
  • H. N. Murthy
    • 1
  • S. S. Salimath
    • 1
  1. 1.Department of BotanyKarnatak UniversityDharwadIndia

Personalised recommendations