Journal of Low Temperature Physics

, Volume 91, Issue 1–2, pp 13–37 | Cite as

Transverse waves in superfluid3He-B

  • G. F. Moores
  • J. A. Sauls


We examine the theory of collisionless transverse current waves in bulk superfluid3He-B, including the coupling to the order parameter collective modes. At low frequencies, Ω ≪ δ(T), the order parameter modes do not contribute to the restoring force for a transverse current, and the quasiparticle contribution drops rapidly as the gap in the spectrum develops. Thus, low-frequency transverse sound becomes overdamped at temperatures nearT c . However, at low temperatures (T ≲0.3T c ) the off-resonant coupling to the J = 2,M = +-1 modes stabilizes a propagating transverse current mode, with a large phase velocity and low damping for frequencies above a critical frequency that is approximately that of theJ = 2 mode. We also discuss the similarities and differences of longitudinal and transverse sound in the superfluid phases. For example, in zero field, right- and left-circularly polarized waves are degenerate. A magnetic field, with\(\overrightarrow \operatorname{H}||\overrightarrow {\text{q}}\), lifts this degeneracy, giving rise to the analog of circular dichroism and birefringence of electromagnetic waves. Thus, transverse waves may be more easily detected in the B-phase than in normal3He.


Transverse Wave Phase Velocity Collective Mode Zero Sound Transverse Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Baym and C. J. Pethick,Landau Fermi-Liquid Theory (Wiley, New York, 1991).Google Scholar
  2. 2.
    L. D. Landau,Sov. Phys. JETP 5, 101 (1957).zbMATHGoogle Scholar
  3. 3.
    W. R. Abel, A. C. Anderson and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).CrossRefADSGoogle Scholar
  4. 4.
    M. J. Lea, A. R. Birks, P. M. Lee and E. R. Dobbs,J. Phys. C: Solid State Phys. 6, L226 (1973).CrossRefADSGoogle Scholar
  5. 5.
    P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).CrossRefADSGoogle Scholar
  6. 6.
    E. G. Flowers, R. W. Richardson and S. J. WilliamsonPhys. Rev. Lett. 37, 309 (1976).CrossRefADSGoogle Scholar
  7. 7.
    P. R. Roach and J. B. Ketterson,J. Low Temp. Phys. 25, 637 (1976).CrossRefGoogle Scholar
  8. 8.
    F. P. Milliken, R. W. Richardson and S. J. Williamson,J. Low Temp. Phys. 45, 409 (1981).CrossRefGoogle Scholar
  9. 9.
    A. J. Leggett,Phys. Rev. 147, 119 (1966).CrossRefADSGoogle Scholar
  10. 10.
    K. Maki,J. Low Temp. Phys. 16, 465 (1974).CrossRefGoogle Scholar
  11. 11.
    M. Combescot and R. Combescot,Phys. Lett. 58A, 181 (1976).CrossRefGoogle Scholar
  12. 12.
    K. Maki,J. Low Temp. Phys. 24, 755 (1976).CrossRefGoogle Scholar
  13. 13.
    K. Maki and H. Ebisawa,J. Low Temp. Phys. 26, 627 (1977).CrossRefGoogle Scholar
  14. 14.
    P. W. Anderson,Phys. Rev. 112, 1900 (1958).MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    N. N. Bogoliubov, Tolmachev, and Shirkov,New Methods in the Theory of Superconductivity (Academy of Science, Moscow, 1958).Google Scholar
  16. 16.
    W. P. Halperin and E. Varoquaux, Order Parameter Collective Modes in Superfluid3He, inHelium Three, W. P. Halperin and L. P. Pitaevskii, eds. (Elsevier, Amsterdam, 1990), p. 353.Google Scholar
  17. 17.
    D. Vollhardt and P. Wölfle,The Superfluid Phases of 3 He (Taylor and Francis, New York, 1990).Google Scholar
  18. 18.
    R. S. Fishman and J. A. Sauls,Phys. Rev. B 33, 6068 (1986).CrossRefADSGoogle Scholar
  19. 19.
    A. I. Larkin and A. B. Migdal,Sov. Phys. JETP 17, 1146 (1963).Google Scholar
  20. 20.
    J. W. Serene, inQuantum Fluids and Solids—1983 (American Institute of Physics, New York, 1983), p. 305.Google Scholar
  21. 21.
    R. H. McKenzie and J. A. Sauls, Collective Modes and Nonlinear Acoustics in Superfluid3He-B inHelium Three, W. P. Halperin and L. P. Pitaevskii, eds. (Elsevier Science Publishers, Amsterdam, 1990), p. 255.Google Scholar
  22. 22.
    V. E. Koch and P. Wölfle,Phys. Rev. Let. 46, 486 (1981).CrossRefADSGoogle Scholar
  23. 23.
    R. W. Giannetta, A. Ahonen, E. Polturak, J. Saunders and E. K. Zeise,Phys. Rev. Lett. 45, 262 (1980).CrossRefADSGoogle Scholar
  24. 24.
    D. B. Mast, B. K. Sarma, J. R. Owers-Bradley, I. D. Calder, J. B. Ketterson and W. P. Halperin,Phys. Rev. Lett. 45, 266 (1980).CrossRefADSGoogle Scholar
  25. 25.
    O. Avenel, E. Varoquaux and H. Ebisawa,Phys. Rev. Lett. 45, 1952 (1980).CrossRefADSGoogle Scholar
  26. 26.
    In Eq. (11) we have corrected an error in theJ = 2, M = +-1 tensors given in Ref. 21. We also drop unimportant phase factors from Eqs. (109) in Ref. 21.Google Scholar
  27. 27.
    G. Eilenberger,Z. Phys. 214, 195 (1968).CrossRefGoogle Scholar
  28. 28.
    A. I. Larkin and Y. N. Ovchinnikov,Zh. Eskp. Teor. Fiz. 55, 2262 (1968).Google Scholar
  29. 29.
    J. W. Serene and D. Rainer,Phys. Rep. 101, 221 (1983).CrossRefADSGoogle Scholar
  30. 30.
    S. K. Yip and J. A. Sauls,J. Low Temp. Phys. 86, 257 (1992).CrossRefGoogle Scholar
  31. 31.
    J. A. Sauls and J. W. Serene,Phys. Rev. 23, 4798 (1981).CrossRefADSGoogle Scholar
  32. 32.
    Y. A. Vdovin, “Effects of P-state Pairing in Fermi Systems”, inApplications of the Methods of Quantum Field Theory to the Many Body Problem (Gosatomizdat, Moscow, 1963), pp. 94–109.Google Scholar
  33. 33.
    I. A. Fomin,Sov. Phys. JETP 27, 1010 (1968).ADSGoogle Scholar
  34. 34.
    D. Einzel,J. Low Temp. Phys. 54, 427 (1984).Google Scholar
  35. 35.
    W. P. Halperin,Physica B 109–110, 1596 (1982).Google Scholar
  36. 36.
    N. Schopohl and L. Tewordt,J. Low Temp. Phys. 45, 67 (1981).CrossRefGoogle Scholar
  37. 37.
    J. A. Sauls and J. W Serene,Phys. Rev. Lett. 49, 1183 (1982).CrossRefADSGoogle Scholar
  38. 38.
    We note that circular dichroism and birefringence of transverse current modes in3He-A is expected to exist even in zero magnetic field as consequence of the spontaneously broken time-reversal and space parity of the ABM order parameter.30 However, the origin of the zero-field effect on the transverse current modes in3He-A is quite different, and its order of magnitude much smaller than the field-induced effect in3He-B.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. F. Moores
    • 1
  • J. A. Sauls
    • 1
  1. 1.Department of Physics & AstronomyNorthwestern UniversityEvanston

Personalised recommendations