Transverse waves in superfluid3He-B
- 64 Downloads
- 26 Citations
Abstract
We examine the theory of collisionless transverse current waves in bulk superfluid3He-B, including the coupling to the order parameter collective modes. At low frequencies, Ω ≪ δ(T), the order parameter modes do not contribute to the restoring force for a transverse current, and the quasiparticle contribution drops rapidly as the gap in the spectrum develops. Thus, low-frequency transverse sound becomes overdamped at temperatures nearT c . However, at low temperatures (T ≲0.3T c ) the off-resonant coupling to the J = 2−,M = +-1 modes stabilizes a propagating transverse current mode, with a large phase velocity and low damping for frequencies above a critical frequency that is approximately that of theJ = 2 − mode. We also discuss the similarities and differences of longitudinal and transverse sound in the superfluid phases. For example, in zero field, right- and left-circularly polarized waves are degenerate. A magnetic field, with\(\overrightarrow \operatorname{H}||\overrightarrow {\text{q}}\), lifts this degeneracy, giving rise to the analog of circular dichroism and birefringence of electromagnetic waves. Thus, transverse waves may be more easily detected in the B-phase than in normal3He.
Keywords
Transverse Wave Phase Velocity Collective Mode Zero Sound Transverse CurrentPreview
Unable to display preview. Download preview PDF.
References
- 1.G. Baym and C. J. Pethick,Landau Fermi-Liquid Theory (Wiley, New York, 1991).Google Scholar
- 2.L. D. Landau,Sov. Phys. JETP 5, 101 (1957).MATHGoogle Scholar
- 3.W. R. Abel, A. C. Anderson and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).CrossRefADSGoogle Scholar
- 4.M. J. Lea, A. R. Birks, P. M. Lee and E. R. Dobbs,J. Phys. C: Solid State Phys. 6, L226 (1973).CrossRefADSGoogle Scholar
- 5.P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).CrossRefADSGoogle Scholar
- 6.E. G. Flowers, R. W. Richardson and S. J. WilliamsonPhys. Rev. Lett. 37, 309 (1976).CrossRefADSGoogle Scholar
- 7.P. R. Roach and J. B. Ketterson,J. Low Temp. Phys. 25, 637 (1976).CrossRefGoogle Scholar
- 8.F. P. Milliken, R. W. Richardson and S. J. Williamson,J. Low Temp. Phys. 45, 409 (1981).CrossRefGoogle Scholar
- 9.A. J. Leggett,Phys. Rev. 147, 119 (1966).CrossRefADSGoogle Scholar
- 10.K. Maki,J. Low Temp. Phys. 16, 465 (1974).CrossRefGoogle Scholar
- 11.M. Combescot and R. Combescot,Phys. Lett. 58A, 181 (1976).CrossRefGoogle Scholar
- 12.K. Maki,J. Low Temp. Phys. 24, 755 (1976).CrossRefGoogle Scholar
- 13.K. Maki and H. Ebisawa,J. Low Temp. Phys. 26, 627 (1977).CrossRefGoogle Scholar
- 14.P. W. Anderson,Phys. Rev. 112, 1900 (1958).MathSciNetCrossRefADSGoogle Scholar
- 15.N. N. Bogoliubov, Tolmachev, and Shirkov,New Methods in the Theory of Superconductivity (Academy of Science, Moscow, 1958).Google Scholar
- 16.W. P. Halperin and E. Varoquaux, Order Parameter Collective Modes in Superfluid3He, inHelium Three, W. P. Halperin and L. P. Pitaevskii, eds. (Elsevier, Amsterdam, 1990), p. 353.Google Scholar
- 17.D. Vollhardt and P. Wölfle,The Superfluid Phases of 3 He (Taylor and Francis, New York, 1990).Google Scholar
- 18.R. S. Fishman and J. A. Sauls,Phys. Rev. B 33, 6068 (1986).CrossRefADSGoogle Scholar
- 19.A. I. Larkin and A. B. Migdal,Sov. Phys. JETP 17, 1146 (1963).Google Scholar
- 20.J. W. Serene, inQuantum Fluids and Solids—1983 (American Institute of Physics, New York, 1983), p. 305.Google Scholar
- 21.R. H. McKenzie and J. A. Sauls, Collective Modes and Nonlinear Acoustics in Superfluid3He-B inHelium Three, W. P. Halperin and L. P. Pitaevskii, eds. (Elsevier Science Publishers, Amsterdam, 1990), p. 255.Google Scholar
- 22.V. E. Koch and P. Wölfle,Phys. Rev. Let. 46, 486 (1981).CrossRefADSGoogle Scholar
- 23.R. W. Giannetta, A. Ahonen, E. Polturak, J. Saunders and E. K. Zeise,Phys. Rev. Lett. 45, 262 (1980).CrossRefADSGoogle Scholar
- 24.D. B. Mast, B. K. Sarma, J. R. Owers-Bradley, I. D. Calder, J. B. Ketterson and W. P. Halperin,Phys. Rev. Lett. 45, 266 (1980).CrossRefADSGoogle Scholar
- 25.O. Avenel, E. Varoquaux and H. Ebisawa,Phys. Rev. Lett. 45, 1952 (1980).CrossRefADSGoogle Scholar
- 26.In Eq. (11) we have corrected an error in theJ = 2, M = +-1 tensors given in Ref. 21. We also drop unimportant phase factors from Eqs. (109) in Ref. 21.Google Scholar
- 27.G. Eilenberger,Z. Phys. 214, 195 (1968).CrossRefGoogle Scholar
- 28.A. I. Larkin and Y. N. Ovchinnikov,Zh. Eskp. Teor. Fiz. 55, 2262 (1968).Google Scholar
- 29.J. W. Serene and D. Rainer,Phys. Rep. 101, 221 (1983).CrossRefADSGoogle Scholar
- 30.S. K. Yip and J. A. Sauls,J. Low Temp. Phys. 86, 257 (1992).CrossRefGoogle Scholar
- 31.J. A. Sauls and J. W. Serene,Phys. Rev. 23, 4798 (1981).CrossRefADSGoogle Scholar
- 32.Y. A. Vdovin, “Effects of P-state Pairing in Fermi Systems”, inApplications of the Methods of Quantum Field Theory to the Many Body Problem (Gosatomizdat, Moscow, 1963), pp. 94–109.Google Scholar
- 33.I. A. Fomin,Sov. Phys. JETP 27, 1010 (1968).ADSGoogle Scholar
- 34.D. Einzel,J. Low Temp. Phys. 54, 427 (1984).Google Scholar
- 35.W. P. Halperin,Physica B 109–110, 1596 (1982).Google Scholar
- 36.N. Schopohl and L. Tewordt,J. Low Temp. Phys. 45, 67 (1981).CrossRefGoogle Scholar
- 37.J. A. Sauls and J. W Serene,Phys. Rev. Lett. 49, 1183 (1982).CrossRefADSGoogle Scholar
- 38.We note that circular dichroism and birefringence of transverse current modes in3He-A is expected to exist even in zero magnetic field as consequence of the spontaneously broken time-reversal and space parity of the ABM order parameter.30 However, the origin of the zero-field effect on the transverse current modes in3He-A is quite different, and its order of magnitude much smaller than the field-induced effect in3He-B.Google Scholar