Acta Applicandae Mathematica

, Volume 15, Issue 1–2, pp 65–81 | Cite as

Symmetries and conservation laws of Navier-Stokes equations

  • V. N. Gusyatnikova
  • V. A. Yumaguzhin


All the symmetries and conservation laws of Navier-Stokes equations are calculated.

AMS Subject classifications (1980)

35Q10 35Q20 35A30 35G20 

Key words

Navier-Stokes equations symmetries conservation laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    PoochnachevV. V.: Group properties of Navier-Stokes equations in the flat case,J. Appl. Mech. Tech. Phys. 1 (1960), 83–90. (in Russian)Google Scholar
  2. 2.
    BytevV. O.: Group properties of Navier-Stokes equations,Numerical Methods of the Solid Medium,3 (1972), N. 3, Novosibirsk, Vych. Centr. Sibir. Otd. Acad. Nauk SSSR, pp. 13–17. (in Russian)Google Scholar
  3. 3.
    KrasilshchikI. S., LychaginV. V., and VinogradovA. M.:Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.Google Scholar
  4. 4.
    VinogradovA. M.: Symmetries and conservation laws of partial differential equations: Basic notions and results,Acta. Appl. Math. 15 (1989), 3–21.Google Scholar
  5. 5.
    VinogradovA. M.: Local symmetries and conservation laws,Acta Appl. Math. 2 (1984), 21–78.Google Scholar
  6. 6.
    VinogradovA. M.: TheC-spectral sequence, Lagrangian formalism and conservation laws. 1. The linear theory; 2. The nonlinear theory,J. Math. Anal. Appl. 100 (1984), 1–129.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • V. N. Gusyatnikova
    • 1
  • V. A. Yumaguzhin
    • 1
  1. 1.Institute of Program SystemsPereslavl-ZalesskyUSSR

Personalised recommendations