Advertisement

Acta Applicandae Mathematica

, Volume 15, Issue 1–2, pp 3–21 | Cite as

Symmetries and conservation laws of partial differential equations: Basic notions and results

  • A. M. Vinogradov
Article

Abstract

The main notions and results which are necessary for finding higher symmetries and conservation laws for general systems of partial differential equations are given. These constitute the starting point for the subsequent papers of this volume. Some problems are also discussed.

AMS subject classification (1980)

35A30 58G05 58G35 58H05 

Key words

Higher symmetries conservation laws partial differential equations infinitely prolonged equations generating functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    VinogradovA. M.: A spectral sequence associated with a nonlinear differential equation and algebra-geometric foundations of Lagrangian field theory with constraints,Dokl. Acad. Nauk. SSSR 238 (1978), 1028–1031 (English translation inSoviet Math. Dokl. 19 (1978), 144–148).Google Scholar
  2. 2.
    VinogradovA. M.: The theory of higher infinitesimal symmetries of nonlinear partial differential equations,Dokl. Acad. Nauk. SSSR 248 (1979), 274–278 (English translation inSoviet Math. Dokl. 20 (1979), 985–990).Google Scholar
  3. 3.
    VinogradovA. M. Local symmetries and conservation laws,Acta Appl. Math. 2 (1984), 21–78.Google Scholar
  4. 4.
    VinogradovA. M.: TheC-spectral sequence, Lagrangian formalism and conservation laws,J. Math. Anal. Appl. 100 (1984), 2–129.Google Scholar
  5. 5.
    IbragimovN. H.:Transformation Groups Applied to Mathematical Physics, D. Reidel, Dordrecht, 1985.Google Scholar
  6. 6.
    OliverP. J.:Application of Lie Groups to Differential Equations, Springer, New York, 1986.Google Scholar
  7. 7.
    GusyatnikovaV. N., SamokhinA. V., TitovV. S., VinogradovA. M., and YumaguzhinV. A.: Symmetries and conservation laws Kadomtsev-Pogutse equations,Acta Appl. Math. 15 (1989), 23–64.Google Scholar
  8. 8.
    GusyatnikovaV. N. and YumaguzhinV. A.: Symmetries and conservation laws of Navier-Stokes equations,Acta Appl. Math. 15 (1989), 65–81.Google Scholar
  9. 9.
    TitovV. S.: On symmetries and conservation laws of the equations of shallow water with an axisymmetric profile of bottom,Acta Appl. Math. 15 (1989), 137–147.Google Scholar
  10. 10.
    VerbovetskyA. M.: Local nonintegrability of the long-short wave interaction equations,Acta Appl. Math. 15 (1989), 121–136.Google Scholar
  11. 11.
    SharometN. O.: Symmetries, invariant solutions and conservation laws of the nonlinear acoustics equation,Acta Appl. Math 15 (1989), 83–120.Google Scholar
  12. 12.
    RomanovskyYu. R.: On symmetries of the heat equation,Acta Appl. Math. 15 (1989), 149–160.Google Scholar
  13. 13.
    Krasil'shchikI. S., LychaginV. V., and VinogradovA. M.:Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.Google Scholar
  14. 14.
    SenashovS. I. and VinogradovA. M.: Symmetries and conservation laws of 2-dimensional ideal plasticity.Proc. Edinburgh Math. Soc. 31 (1988), 415–439.Google Scholar
  15. 15.
    Krasil'shchikI. S. and VinogradovA. M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations,Acta Appl. Math. 15 (1989), 161–209.Google Scholar
  16. 16.
    GusyatnikovaV. N., VinogradovA. M., and YumaguzhinW. A.: Secondary differential operators,J. Geom. Phys. 2 (1985), 23–66.Google Scholar
  17. 17.
    TsujishitaT.: On variation biocomplexes associated to differential equations,Osaka Math. J. 19 (1982), 311–363.Google Scholar
  18. 18.
    AstashovA. M. and VinogradovA. M.: On the structure of Hamiltonian operators in field theory.J. Geom. Phys. 3 (1986), 264–287.Google Scholar
  19. 19.
    Vinogradov, A. M.: The category of differential equations and its significance for physics,Proc. Conf. Differential Geometry and its Applications. Nove Mesto na Morave (VSSR), 5–9 September 1983, Part 2, pp. 289–301.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. M. Vinogradov
    • 1
  1. 1.Department of MathematicsMoscow State UniversityMoscowUSSR

Personalised recommendations