Landscape Ecology

, Volume 3, Issue 3–4, pp 217–227 | Cite as

Quantifying scale-dependent effects of animal movement with simple percolation models

  • R. H. Gardner
  • R. V. O'Neill
  • M. G. Turner
  • V. H. Dale
Article

Abstract

A simple model of animal movement on random and patterned landscapes was used to explore the problems of extrapolating information across a range of spatial scales. Simulation results indicate that simple relation- ships between pattern and process will produce a variety of scale-dependent effects. These theoretical studies can be used to design experiments for determining the nature of scale-dependent processes and to estimate parameters for extrapolating information across scales.

Keywords

scale landscape critical threshold extrapolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T.F.H. and Starr, T.B. 1982. Hierarchy: perspectives for ecological complexity. The University of Chicago Press, Chicago.Google Scholar
  2. Burrough, P.A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 240–242.Google Scholar
  3. Burrough, P.A. 1983. Multiscale sources of spatial variation in soil: The application of fractal concepts to nested levels of soil variation. J. Soil Sci. 34: 577–587.Google Scholar
  4. Cox, J.T. and Durrett, R. 1988. Limit theorems for the spread of epidemics and forst fires. Stochastic Processes and Their Applications 30: 171–191.Google Scholar
  5. Gardner, R.H., Milne, B.T., Turner, M.G. and O'Neill, R.V. 1987. Neutral models for the analysis of broad-scale land- scape pattern. Landscape Ecol. 1: 19–28.Google Scholar
  6. Grassberger, P. 1983. On the critical behavior of the general epidemic process and dynamical percolation. Math. Biosci. 63: 157–172.Google Scholar
  7. King, A.W., DeAngelis, D.L. and Post, W.M. 1987. The seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: extrapolation from site-specific models to regional models. ORNL/TM-10570. Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  8. King, A.W., Emanuel, W.R. and O'Neill, R.V. April 19–22, 1988 Linking mechanistic models of tree physiology with models of forest dynamics: problems of temporal scale. In Proceedings of Conference on Forest Growth: Process Modeling of Response to Environmental Stress, Gulf Shores Conference, April 19–22, 1988. Timber Press, Auburn, Alabama (in press).Google Scholar
  9. Krummel, J.R., Gardner, R.H., Sugihara, G., O'Neill, R.V. and Coleman, P.R. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.Google Scholar
  10. Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science 216: 185–187.Google Scholar
  11. Lovejoy, S., Schertzer, D. and Tsonis, A.A. 1987. Functional box-counting and multiple elliptical dimensions in rain. Science 235: 1036–1038.Google Scholar
  12. MacKay, G. and Jan, N. 1984. Forest fires as critical phenomena. J. Phys. A: Math. Gen. 17: L757–L760.Google Scholar
  13. Mandelbrot, B.B. 1967. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.Google Scholar
  14. Mandelbrot, B.B. 1983. The fractal geometry of nature. Freeman, New York.Google Scholar
  15. Margolina, A., Nakanishi, H., Stauffer, D. and Stanley, H.E. 1984. Monte Carlo and series study of corrections to scaling in two-dimensional percolation. J. Phys. A: Math. Gen. 17: 1683–1701.Google Scholar
  16. Milne, B.T. 1988. Measuring the fractal geometry of landscapes. Appl. Math. Comput. 27: 67–79.Google Scholar
  17. Morse, D.R., Lawton, J.H., Dodson, M.M. and Williamson, M.H. 1985. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314: 731–733.Google Scholar
  18. Ohtsuki, T. and Keyes, T. 1988. Scaling theory of hydrodynamic dispersion in percolation networks. Phys. Rev. A 37: 2669–2672.Google Scholar
  19. O'Neill, R.V. 1979. Transmutations across hierarchical levels. In Systems Analysis of Ecosystems, pp. 59–78. Edited by G.S. Innis and R.V. O'Neill. International Cooperative Publishing House, Fairland, Maryland.Google Scholar
  20. O'Neill, R.V., DeAngelis, D.L., Waide, J.B. and Allen, T.F.H. 1986. A hierarchical concept of ecosystems. Princeton University Press, Princeton, New Jersey.Google Scholar
  21. Rosen, this issue.Google Scholar
  22. Stauffer, D. 1985. Introduction to percolation theory. Taylor and Francis, London.Google Scholar
  23. Stauffer, D. 1987. Random boolean networks: analogy with percolation. Phil. Mag. B 56: 901–916.Google Scholar
  24. Sugihara, G. Applications of fractals in ecology. Trends in Ecology and Evolution (in press).Google Scholar
  25. Turner, M.G., Dale, V.H. and Gardner, R.H. Predicting across scales: theory development and testing (this issue).Google Scholar
  26. Turner, M.G., Gardner, R.H., Dale, V.H. and O'Neill, R.V. Predicting the spread of disturbance across heterogeneous landscapes. Oikos (in press).Google Scholar
  27. von Niessen, W. and Blumen, A. 1988. Dynamic simulation of forest fires. Can. J. For. Res. 18: 805–812.Google Scholar
  28. Voss, R.F., Laibowitz, R.B. and Allessandrini, E.I. 1982. Fractal (Scaling) clusters in thin gold films near the percolation threshold. Phys. Rev. Lett. 49: 1441–1444.Google Scholar

Copyright information

© SPB Academic Publishing bv 1989

Authors and Affiliations

  • R. H. Gardner
    • 1
  • R. V. O'Neill
    • 1
  • M. G. Turner
    • 1
  • V. H. Dale
    • 1
  1. 1.Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations