Landscape Ecology

, Volume 3, Issue 2, pp 67–86 | Cite as

The land unit — A fundamental concept in landscape ecology, and its applications

  • Isaak S. Zonneveld


The land unit, as an expression of landscape as a system, is a fundamental concept in landscape ecology. It is an ecologically homogeneous tract of land at the scale at issue. It provides a basis for studying topologic as well as chorologic landscape ecology relationships. A land unit survey aims at mapping such land units. This is done by simultaneously using characteristics of the most obvious (mappable) land attributes: land-form, soil and vegetation (including human alteration of these three). The land unit is the basis of the map legend but may be expressed via these three land attributes. The more dynamic land attributes, such as certain animal populations and water fluxes, are less suitable as diagnostic criteria, but often link units by characteristic information/energy fluxes.

The land unit survey is related to a further development of the widely accepted physiographic soil survey see Edelman (1950). Important aspects include: by means of a systems approach, the various land data can be integrated more appropriately; geomorphology, vegetation and soil science support each other during all stages (photo-interpretation, field survey, data processing, final classification); the time and costs are considerably less compared with the execution of separate surveys; the result is directly suitable as a basis for land evaluation; the results can be expressed in separate soil, vegetation, land use and landform maps, or even single value maps.

A land unit survey is therefore: a method for efficient survey of land attributes, such as soils, vegetation, landform, expressed in either separate or combined maps; a means of stimulating integration among separate land attribute sciences; an efficient basis for land evaluation. For multidisciplinary projects with applied ecologic aims (e.g., land management), it is therefore the most appropriate survey approach.

Within the land unit approach there is considerable freedom in the way in which the various land attribute data are ‘integrated’. It is essential, however, that: during the photo-interpretation stage, the contributions of the various specialists are brought together to prepare a preliminary (land unit) photo-interpretation map; the fieldwork data are collected at exactly the same sample point, preferably by a team of specialists in which soil, vegetation and geomorphology are represented; the final map is prepared in close cooperation of all contributing disciplines, based on photo-interpretation and field data; the final map approach may vary from one fully-integrated land unit map to various monothematic maps.


landscape survey land unit concept land unit mapping land unit systems landscape classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade, A., Valenzuela, C.R. and de Vos tNC, J.H. 1988. tAn ILWIS application for land use planning in Llanos Orientales Colombia. ITC Journal 1988-1, pp. 109–115.Google Scholar
  2. Banning, J.H., Leys, H.N. and Zonneveld, I.S. 1973. Vegetation, Habitat and Site Class in Dutch Conifer Forest. Bodemk Stud g, Sti-Bo-Ka, Wageningen, The Netherlands. 188 pp.Google Scholar
  3. Christian, C.S. and Stewart, G.A. 1964. Methodology of integrated surveys. Proc. Unesco conf. on principles and methods of integrated aerial surveys of natural resources for potential development, Toulouse 1964. WS/0384.15/NS. 146 pp.Google Scholar
  4. Edelman, C.H. 1950. Soils of The Netherlands. NV Noordh. Uitg. My, Amsterdam. 178 pp.Google Scholar
  5. Etter-Rottisberger, A. 1985. A landscape ecological approach for grazing development (a case study in the Colombran Llanos). Unpubl. MSc. Thesis, ITC Enschede. 127 pp.Google Scholar
  6. Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley & Sons, New York. 619 pp.Google Scholar
  7. Gils, H.M. van 1989. Map legends. ITC Journal, in press.Google Scholar
  8. Goosen, D.J. 1967. Aerial Photo-Interpretation in Soil Survey. Soils Bulletin No. 6, FAO, Rome.Google Scholar
  9. Hielkema, J., Howard, J.A., Tucker, C.J. and van Ingenschenau, H.A. 1986. The FAO/NASA/NLR ARTEMIS system: an integrated concept for environmental monitoring by satellite in support of food/feed security and desert locust surveillance. Proc. 20th Symp. on Remote Sensing of Environment, Kenya, pp. 147–160.Google Scholar
  10. Holdridge, L.R. 1959. Ecological indication of the need for a new approach to tropical land use. Econ. Botany 13(4): 271–280.Google Scholar
  11. Hommel, P.W.R.M. 1987. Landscape Ecology of Udjung Kulon (West Java). PhD. Diss., Wageningen, Priv. Publ., Appendices, coloured map. 206 pp.Google Scholar
  12. ITC 1977. Projet de développement rural integré de la Région Kaärta, Rep. du Mali. Phase de reconnaissance du Volet VIII, Cartographie. ITC, Enschede.Google Scholar
  13. Kalkhoven, J.T.R. and van der Werff, S. 1988. Mapping the potential natural vegetation. In Küchler and Zonneveld, 1988. Chap. 26, pp. 375–387.Google Scholar
  14. Küchler, A.W. and Zonneveld, I.S. (eds.) 1988. Handbook of Vegetation Science. Kluwer Academic Publ., Dordrecht. 632 pp.Google Scholar
  15. Kwakernaak, C. 1986. Informatie als begrip in de landschapsecologie (information as a concept in landscape ecology). Landschap 3(3): 182–189, 248.Google Scholar
  16. Leeuwen, C.G. van 1981. From ecosystem to ecodevice. In Perspectives in Landscape Ecology. Proc. Internatl. Cong. Netherlands Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 29–36. Pudoc, Wageningen.Google Scholar
  17. Merriam, G. 1988. Landscape ecology: the ecology of heterogeneous systems. In: Landscape Ecology and Managemet, pp. 35–43. Edited by M. Moss. Polysc Publ. Inc., Montreal.Google Scholar
  18. Meijerink, A.M.J., Valenzuela, C.R. and Stewart, A. (eds.) 1988. ILWIS: The Integrated Land and Watershed Management Information System. ITC Publ. No. 7, Enschede. 115 pp.Google Scholar
  19. Naveh, Z. and Liebermann, A.S. 1984. Landscape Ecology: Theory and Application. Springer-Verlag, New York. 358 pp.Google Scholar
  20. Neef, E. 1967. Die Theoretischen Grundlagen der Landschafflehre. Haach, Gotha/Leipzig.Google Scholar
  21. Opdam, P. 1984. Delineating ecotopes as holistic landscape units. Some methodological problems. Ann. Rep. RIN, Leersum, The Netherlands, pp. 77–88.Google Scholar
  22. Phipps, M. 1981. Information theory and landscape analysis. In Perspectives in Landscape Ecology, Proc. Internatl. Cong. Netherlandds Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 67–64. Pudoc, Wageningen.Google Scholar
  23. Pleijsier, L.K. 1989. Variability in soil data. In Land Qualities in Space and Time, Proc. ISSS Symp. pp. 89–100. Edited by J. Bouma and A.K. Bregt. Pudoc, Wageningen.Google Scholar
  24. Prigogin, I. and Strengers, I. 1985. Orde uit Chaos. Uitg. Bert Bakker, Amsterdam. 352 pp.Google Scholar
  25. Smuts, J.C. 1926. Holism and Evolution. MacMillan, London. 368 pp.Google Scholar
  26. Stan Rowe, J. 1988. The study of terrain ecosystems. In Landscape Ecology and Management, pp. 35–43. Edited by M. Moss. Polysc Publ. Inc., Montreal.Google Scholar
  27. Theorie Werkgroep WLO. 1986. Methoden der begrippen in de Landschapsecology (methods and concepts in landscape ecology), Neth. Soc. for Landscape Ecology. Landschap 3(3): 172–181, 248.Google Scholar
  28. Thie, J. and Ironside, G. (eds.) 1976. Ecological (Biophysical) Land Classification in Canada. Ecol. Land Class Series No. 1. Lands Directorate, Environment Canada, Ottawa.Google Scholar
  29. Troll, C. 1950. Die geografische Landschaft und ihre Forschung. Studium generale 3. Jahrgang Heft 4/5. Springer Verlag, Berlin.Google Scholar
  30. Tüxen, R. 1951. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetations Kartierung. Angew. Pflanzensoziologie, Vol. 13. pp. 5–12.Google Scholar
  31. Wirdum, G. van 1981. Design for a land ecological survey of native protection. In Perspectives in Landscape Ecology, Proc. Internatl. Cong. Netherlands Soc. of Landscape Ecology, Veldhoven, 6–8 April 1981. pp. 245–251. Pudoc, Wageningen.Google Scholar
  32. Zee, D. van der and Huizing, H. 1988. Automated cartography and electronic information system. Chap. 14. pp. 163–190. In Küchler, A.W.and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.Google Scholar
  33. Zonneveld, I.S. 1979. Land Evaluation and Land(scape) Science. ITC Textbook VII.4 (2nd ed.), ITC Enschede. 134 pp.Google Scholar
  34. Zonneveld, I.S. 1986. A systematic approach to the evaluation of rangeland inventory data. In Rangelands, a Resource under Siege, Proc. 2nd Internat. Rangeland Cong., Canberra, pp. 515–516. Australian Acada. of Science, Canberra.Google Scholar
  35. Zonneveld, I.S. and Surasana, E. 1988. Ecosystem inventory/vegetation survey (Komering basin, Sumatra), ITC Journal 1988-1, pp. 67–75.Google Scholar
  36. Zonneveld, I.S. 1988a. The ITC approach of mapping natural and semi-natural vegetation. Chap. 29. pp. 401–427. In Küchler, A.W. and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.Google Scholar
  37. Zonneveld, I.S. 1988b. Environmental indication. Chap. 36. pp. 491–499. In Küchler, A.W. and I.S. Zonneveld. Handbook of Vegetation Science. Kluwer Acad. Publ., Dordrecht.Google Scholar

Copyright information

© SPB Academic Publishing bv 1989

Authors and Affiliations

  • Isaak S. Zonneveld
    • 1
  1. 1.ITCEnschedeThe Netherlands

Personalised recommendations