Biotechnology Letters

, Volume 17, Issue 4, pp 371–376 | Cite as

Effect of hydration on thermostability

  • N. A. Turner
  • D. B. Duchateau
  • E. N. Vulfson


The thermostability of several serine esterases has been studied using differential scanning calorimetry. The denaturation temperature (Tm) was found to be 30–50°C higher in anhydrous environments than in aqueous solution. An almost linear decrease in Tm as a function of water activity (Aw) was observed. It is concluded that the highest productivity of an enzyme in a bioreactor would be obtained at a hydration level below optimal for catalytic activty. The data also indicates that a significant destabilisation of the protein's unfolded state occurs at low values of Aw.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, F.H. (1990) TIBTECH, 8, 244–249.Google Scholar
  2. Battistel, E. and Bianchi, D. (1994) J. Phys. Chem., 98, 5368–5375.Google Scholar
  3. Bjorklin, F., Godtfredsen, S.E. and Kirk, O. (1991) Trends in Biotech., 9, 360–363.Google Scholar
  4. De Cordt, S., Avila, I., Hendrickx, M. and Tobback P. (1994) Biotech. Bioeng., 44, 859–865.Google Scholar
  5. Faber, K. and Franssen, M.C.R. (1993) Trends Biotech, 11, 461–470Google Scholar
  6. Huge-Jensen, B., Galluzzo, D.R. and Jensen, R.G. (1987) J. Amer. Oil Chem. Soc., 65, 905–910.Google Scholar
  7. Klibanov, A.M. (1990) Acc. Chem. Res., 23, 114–120.Google Scholar
  8. Laane, C., Boeren, S., Vos, K. and Veeger, C. (1987) Biotech. Bioeng., 30, 81–87.Google Scholar
  9. Lowry, O.H., Rosenbrough, N.J. Far, A.L. and Randall, R.H. (1951) J. Biol. Chem., 193, 265–275.Google Scholar
  10. Margolin, A.L. (1993) Enzyme Microb. Technol., 15, 266–280Google Scholar
  11. Schulze, B. and Klibanov, A.M. (1991) Biotech. Bioeng., 38, 1001–1006.Google Scholar
  12. Raldi, G., Battistel, E., Benatti, L. and Sabbioneta (1992) J. Thermal Analysis, 38, 159–167.Google Scholar
  13. Valivety, R.H., Halling, P.J. and Macrae, A.R. (1992) Biochim. Biophys. Acta, 1118, 218–222.Google Scholar
  14. Valivety, R.H., Halling, P.J., Peilow, A.D. and Macrae, A.R. (1994) Eur. J. Biochem., 222, 461–466.Google Scholar
  15. Volkin, D.B., Staubli, A., Langer, R. and Klibanov, A.M. (1991) Biotech. Bioeng., 37, 843–853Google Scholar
  16. Vulfson, E.N., Sarney, D. and Law, B.A. (1991) Enz. Micro. Tech., 13, 796–800.Google Scholar
  17. Vulfson, E.N. (1993) Trends Food Sci. Technol., 4, 209–214Google Scholar
  18. Vulfson, E.N. (1994) Industrial applications of lipases. In: Lipases; Structure, Biochemistry, Applications. (P. Wooley, ed) Camridge University Press, 271–288.Google Scholar
  19. Yamane, T, Ichiryu, T, Nagata, M, Ueno, A. and Shimizu S. (1990) Biotech. Bioeng., 36, 1063–1069.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • N. A. Turner
    • 1
  • D. B. Duchateau
    • 1
  • E. N. Vulfson
    • 1
  1. 1.BBSRC Institute of Food Research, Reading LaboratoryReadingUK

Personalised recommendations