Journal of Computer-Aided Molecular Design

, Volume 6, Issue 5, pp 521–535 | Cite as

Heterofullerenes: Structure and property predictions, possible uses and synthesis proposals

  • Heinrich R. Karfunkel
  • Thomas Dressler
  • Andreas Hirsch
Research Papers

Summary

Substituting carbon atoms of fullerenes by heteroatoms and vacancies will lead to new and yet unknown spherical-shaped molecules termed hereafter as heterofullerenes. The enormous structural diversity of these molecules is investigated and their structural, electronic and thermochemical properties are predicted using semiempirical computations. Computational results for complexes with ions lead to the hypothesis that these molecules behave like microscopic Faraday cages in which the electrons concentrate on the outer side of the sphere. It is predicted that some of these heterofullerenes are structurally and electronically similar to phthalocyanines and related molecules but offer many additional advantages. Potential uses such as adding heterofullerenes to fullerene materials, as superior starting materials for the fabrication of diamonds, as catalysts in hydrogenation reactions, as components of materials dominated until now by phthalocyanines, etc., are discussed. Simple synthetic routes to these compounds that are based on minor alternations of existing methods for fullerene production are proposed. On the basis of the thermochemical calculations, we believe that the most promising possibility consists of using metal cyanide/graphite composite target rods instead of pure graphite rods as in a conventional fullerene synthesis.

Key words

Azafullerenes AMI computations Reduced azafullerenes Phthalocyanines Material science Diamond synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E., Nature, 318 (1985) 162.Google Scholar
  2. 2.
    Kroto, H.W., Allaf, A.W. and Balm, S.P., Chem. Rev., 91 (1991) 1213.Google Scholar
  3. 3.
    Haddon, R.C., Hebard, A.F., Rosseinsky, M.J., Murphy, D.W., Duclos, S.J., Lyons, K.B., Miller, B., Rosamilia, J.M., Fleming, R.M., Kortan, A.R., Glarum, S.H., Makhija, A.V., Muller, A.J., Eick, R.H., Zahurak, S.M., Tycko, R., Dabbagh, G. and Thiel, F.A., Nature, 350 (1991) 320.Google Scholar
  4. 4.
    Kochanski, G.P., Hebard, A.F., Haddon, R.C. and Fiory, A.T., Science, 255 (1992) 184.Google Scholar
  5. 5.
    Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R., Nature, 350 (1991) 600.Google Scholar
  6. 6.
    Hirsch, A., Soi, A. and Karfunkel, H.R., Angew. Chem., 104 (1992) 808.Google Scholar
  7. 7.
    Suzuki, T., Li, Q., Khemani, K.C., Wudl, F. and Almarsson, O., Science, 254 (1991) 1186.Google Scholar
  8. 8.
    Krusic, P.J., Waserman, E., Keizer, P.N., Morton, J.R. and Preston, K.F., Science, (254 1991) 1183.Google Scholar
  9. 9.
    Holczer, K., Klein, O., Huang, S-M., Kaner, R.B., Fu, K-J., Whetten, R.L. and Diederich, F., Science, 252 (1991) 1154.Google Scholar
  10. 10.
    Diederich, F., Whetten, R.L., Thilgen, C., Ettl, R., Chao, I. and Alvarez, M.M., Science, 254 (1991) 1768.Google Scholar
  11. 11.
    Ettl, R., Chao, I., Diederich, F. and Whetten, R.L., Nature, 353 (1991) 149.Google Scholar
  12. 12.
    Chai, Y., Guo, T., Jin, C., Haufler, R.E., Felipe Chibante, L.P., Fure, J., Wang, L., Alford, J.M. and Smally, R.E., J. Phys. Chem., 95 (1991) 7564.Google Scholar
  13. 13.
    Brunger, A.T., BrooksIII, C.L. and Karplus, M., Proc. Natl. Acad. Sci. USA, 82 (1985) 8458.Google Scholar
  14. 14.
    Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., and Still, W.C., J. Comp. Chem., 11 (1990) 440.Google Scholar
  15. 15.
    Burkert, U. and Allinger, N.L., Molecular Mechanics, ACS Monography 177, American Chemical Society, Washington D.C., 1982.Google Scholar
  16. 16.
    Weiner, S.J., Kollman, P., Case, D., Singh, U., Ghio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.Google Scholar
  17. 17.
    Stewart, J.J.P., QCPE 1990, QCPE 455, MOPAC Version 6.0.Google Scholar
  18. 18.
    Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.Google Scholar
  19. 19.
    Stewart, J.J.P., J. Comp. Chem., 10 (1989) 221.Google Scholar
  20. 20.
    Besler, B.H., MerzJr., K.M. and Kollman, P.A., J. Comp. Chem., 11 (1990) 431.Google Scholar
  21. 21.
    Stanton, R.E., J. Phys. Chem., 96 (1992) 111.Google Scholar
  22. 22.
    Lüthi, H.P. and Almlöf, J., Chem. Phys. Lett., 135 (1987) 357.Google Scholar
  23. 23.
    Rudzinski, J.M., Slanina, Z., Togasi, M. and Osawa, E., Thermochimia Acta, 125 (1988) 155.Google Scholar
  24. 24.
    Slanina, Z.J., Rudzinski, J.M., Togasi, M. and Osawa, E., Mol. Struct. (Theochem), 202 (1989) 169.Google Scholar
  25. 25.
    Stewart, J.J.P. and Coolidge, M.B., J. Comp. Chem., 12 (1991) 1157.Google Scholar
  26. 26.
    Bakowies, D. and Thiel, W., J. Am. Chem. Soc., 113 (1991) 3704.Google Scholar
  27. 27.
    Moerner, W.E., In Persistent Spectral Hole-Burning: Science and Application, Topics in Current Physics, Volume 44, Springer-Verlag, Heidelberg, 1988.Google Scholar
  28. 28.
    Gorokhovskii, A.A., Kaarli, R.K. and Rebane, L.A., Opt. Commun., 16 (1976) 282.Google Scholar
  29. 29.
    Zhang, Q.L., O'Brien, S.C., Heath, J.R., Liu, Y., Curl, R.F., Kroto, H.W. and Smalley, R.E., J. Phys. Chem., 90 (1986) 525.Google Scholar
  30. 30.
    Sunderlin, L.S., Paulino, J.A., Chow, J., Kahr, B., Ben-Amotz, D. and Squires, R.R., J. Am. Chem. Soc., 113 (1991) 5489.Google Scholar
  31. 31.
    So, Y.H. and Miller, L.L., J. Am. Chem. Soc., 103 (1981) 4204.Google Scholar
  32. 32.
    Henis, N.B.H. and Miller, L.L., J. Am. Chem. Soc., 104 (1982) 2526.Google Scholar
  33. 33.
    Curl, R.F. and Smalley, R.E., Scientific Am., October 1991, 32.Google Scholar
  34. 34.
    Johnson, R.D., deVries, M.S., Salem, J., Bethune, D.S. and Yannoni, C.S., Nature, (355 1992) 239.Google Scholar
  35. 35.
    Schulz, H., Lehmann, H., Rein, M. and Hanack, M., Structure and Bonding, 74 (1991) 43.Google Scholar
  36. 36.
    Hanack, M., Chimia, 37 (1983) 238.Google Scholar
  37. 37.
    Hanack, M., Isr. J. Chem., 25 (1985) 205.Google Scholar
  38. 38.
    Münz, X. and Hanack, M., Chem. Ber., 121 (1988) 235.Google Scholar
  39. 39.
    Koch, W., Ph.D. Dissertation, University of Tübingen, 1986.Google Scholar
  40. 40.
    Regueiro, M.N., Monceau, P. and Hodeau, J-L., Nature, 355 (1992) 237.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1992

Authors and Affiliations

  • Heinrich R. Karfunkel
    • 1
  • Thomas Dressler
    • 2
  • Andreas Hirsch
    • 3
  1. 1.Ciba-Geigy AG, KB-ITBaselSwitzerland
  2. 2.IBM GermanyStuttgart 80Germany
  3. 3.University of TübingenTübingenGermany

Personalised recommendations