Biotechnology Letters

, Volume 17, Issue 7, pp 751–756 | Cite as

Loss of ethanologenicity in Escherichia coli B recombinants pLOI297 and KO11 during growth in the absence of antibiotics

  • Hugh G. Lawford
  • Joyce D. Rousseau

Summary

The two cultures under investigation were genetically engineered for the purpose of producing fuel ethanol from biomass and wastes. In this study, stability was viewed in pragmatic terms whereby the fermentation performance of the different genetic constructs was assessed solely with respect to their capacity to maintain a high efficiency of sugar-to-ethanol conversion. Two serial transfers of test tube batch cultures accounted for about 12 generations of semi-continuous growth in LB medium containing one of 4 different sugars - glucose, galactose, mannose or xylose. Both the plasmid-bearing recombinant E. coli B (ATCC 11303) pLOI297 and the chromosomally-integrated recombinant KO11 exhibited dramatic loss of ethanologenicity during growth in a selective (antibiotic-supplemented) medium with mannose as fermentation substrate. In the absence of antibiotics, both recombinants exhibited instability, with the exception of KO11 with xylose as substrate. These observations with short term cultures call into question previous claims regarding the stability of these genetic constructs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alterthum, F. and Ingram, L. O. (1989) Appl. Environ. Microbiol., 55, 1943–1948Google Scholar
  2. Beall, D. S., Ohta, K. and Ingram, L. O. (1991) Biotech. Bioeng., 38, 296–303Google Scholar
  3. Hahn-Hägerdal, B., Jeppsson, H., Olsson, L. and Mohagheghi, A. (1994) Appl. Microbiol. Biotechnol., 41, 62–72Google Scholar
  4. Ingram, L. O., Conway, T. and Alterthum, F. (1991) United States Patent 5,000,000Google Scholar
  5. Lawford, H. G. and Rousseau, J. D. (1991) Appl. Biochem. Biotechnol., 28/29, 221–236Google Scholar
  6. Lawford, H. G. and Rousseau, J. D. (1992) Biotechnol. Letts., 14, 421–426Google Scholar
  7. Lawford, H. G. and Rousseau, J. D. (1993a) Biotechnol. Letts., 15, 505–510Google Scholar
  8. Lawford, H. G. and Rousseau, J. D. (1993b) Biotechnol. Letts., 15, 615–620Google Scholar
  9. Luria, S. E. and Delbruck, M. (1943) Genetics, 28, 491–511Google Scholar
  10. Lynd, L.R., Cushman, J.H., Nichols, R.J. & Wyman, C.E. (1991), Science, 251, 1318–1323Google Scholar
  11. McMillan, J. D. (1993) Xylose Fermentation to Ethanol: a review; NREL TP-421–4944; National Renewable Energy Laboratory, Golden, CO, USAGoogle Scholar
  12. McMillan, J. D. (1994) In: Bioconversion for Fuels, Himmel, M.E., Baker, J.O., Overend, R.P., eds., ACS Symp. Series 566, American Chemical Society, Chapter 21, pp 411–437Google Scholar
  13. Ohta, K., Alterthum, F. and Ingram, L. O. (1990) Appl. Environ. Microbiol., 56, 463–465Google Scholar
  14. Ohta, K., Beall, D. S., Meijia, J. P., Shanmugam, K. T. and Ingram, L. O. (1991) Appl. Environ. Microbiol., 57, 893–900Google Scholar
  15. von Sivers, M., Zacchi, G., Olsson, L. and Hahn-Hägerdal, B. (1994) Biotechnol. Prog., 10, 555–560Google Scholar
  16. Wyman, C. E. and Hinman, N. D. (1990) Appl. Biochem. Biotechnol., 24/25, 735–753Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Hugh G. Lawford
    • 1
  • Joyce D. Rousseau
    • 1
  1. 1.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations