Advertisement

Biotechnology Letters

, Volume 18, Issue 9, pp 997–1002 | Cite as

Stabilization of pyrroloquinoline quinone glucose dehydrogenase by cross-linking chemical modification

  • Koji Sode
  • Tomonori Shimakita
  • Shokichi Ohuchi
  • Tomohiko Yamazaki
Article

Summary

Cross-linking chemical modification of pyrroloquinoline quinone (PQQ) glucose dehydrogenase (GDH) by glutaraldehyde was carried out and its stability was analyzed. Although native PQQGDH was inactivated within 30 min at a higher temperature than 50 °C, cross-linked PQQGDH retained more than 40% of initial activity even after 30 min of incubation at 54 °C. In addition to the increase in thermal stability, cross-linked PQQGDH gained high EDTA tolerance. The stabilization may be achieved by increased the rigidity of PQQGDH holo enzyme conformation.

Keywords

Glucose Enzyme EDTA Organic Chemistry Thermal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clenton-Jansen, A.-M., Goosen, N., Fayet, O. and van de Putte, P. (1990). J. Bacteriol. 172, 6308–6315.Google Scholar
  2. Clenton-Jansen, A.-M., Goosen, N., Vink, K. and van de Putte, P. (1989). Mol. Gen. Genet. 217, 430–436.Google Scholar
  3. Clenton-Jansen, A.-M., Goosen, N., Wenzel, T.J. and van de Putte, P. (1988). J. Bacteriol. 170, 2121–2125.Google Scholar
  4. Femandez-Lafuente, R., Cowan, D.A. and Wood, A.N.P. (1995). Enzyme Microb. Technol. 17, 366–372.Google Scholar
  5. Ghosh, M., Anthony, C., Harlos, K., Goodwin, M.G. and Blake, C. (1995). Structure, 3, 177–187.Google Scholar
  6. Kozulic, B., Leustek, I., Pavlovic, B., Mildner, P. and Barbaric, S. (1987). Biochem. Biotechnol. 15, 265.Google Scholar
  7. Matsushita, K., Toyama, H., Ameyama, M., Adachi, O., Dewanti, A. and Duine, J.A. (1995). Biosci. Biotech. Biochem. 59, 1548–1555.Google Scholar
  8. Sode, K., Nakasono, S., Tanaka, M. and Matsunaga, T. (1993). Biotechnol. Bioeng. 42, 251–254.Google Scholar
  9. Sode, K. and Sano, H. (1994). Biotechnol. Lett. 16, 455–460.Google Scholar
  10. Sode, K., Watanabe, K., Ito, S., Matsumura, K. and Kikuchi, T. (1995). FEBS Lett. 364, 325–327.Google Scholar
  11. Sode, K., Yoshida, H., Matsumura, K., Kikuchi, T., Watanabe, M., Yasutake, N., Ito, S. and Sano, H. (1995). Biochem. Biophys. Res. Commun. 211, 268–273.Google Scholar
  12. Turner, A.P.F., D'Costa, E.J. and Higgins, I.J. (1987). Ann. N.Y. Acad. Sci. Eng. 8 501, 283–287.Google Scholar
  13. Ye, L., Hammerle, M., Olsthoorn, A.J.J., Shuhmann, W., Schmidt, H.L., Duine, J.A. and Heller, A. (1993). Anal. Chem. 65, 238–241.Google Scholar
  14. Yokoyama, K., Sode, K., Tamiya, E. and Karube, I. (1989). Anal. Chim. Acta 218, 137–142.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Koji Sode
    • 1
  • Tomonori Shimakita
    • 1
  • Shokichi Ohuchi
    • 1
  • Tomohiko Yamazaki
    • 1
  1. 1.Department of Biotechnology, Faculty of TechnologyTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations