Biodegradation

, Volume 3, Issue 2–3, pp 351–368 | Cite as

Biodegradation of polycyclic aromatic hydrocarbons

  • Carl E. Cerniglia

Abstract

The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

Key words

biodegradation degradation detoxification dioxygenase hydroxylation monooxygenase polycyclic aromatic hydrocarbons ring cleavage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar MN, Boyd DR, Thomas NJ, Koreeda M, Gibson DT, Mahadevan V & Jerina DM (1975) Absolute stereochemistry of the dihydroanthracene cis- and trans-1,2-diols produced from anthracene by mammals and bacteria. J. Chem. Soc. Perkin Trans. I: 2506–2511Google Scholar
  2. Aronstein BN, Calvillo YM & Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25: 1728–1731Google Scholar
  3. Atlas RM (1991) Microbial hydrocarbon degradation-Bioremediation of oil spills. J. Chem. Technol. Biotechnol. 52: 149–156Google Scholar
  4. Aust SD (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microb. Ecol. 20: 197–209Google Scholar
  5. Barnsley EA (1975) Bacterial degradation of fluoranthene and benzo[a]pyrene. Can. J. Microbiol. 21: 1004–1008Google Scholar
  6. Barnsley EA (1976a) Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol. 125: 404–408Google Scholar
  7. Barnsley EA (1976b) Naphthalene metabolism by Pseudomonas: the oxidation of 1,2-dihydroxynapthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxy-benzalpyruvate. Biochem. Biophys. Res. Commun. 72: 1116–1121Google Scholar
  8. Barnsley EA (1983) Bacterial oxidation of naphthalene and phenanthrene. J. Bacteriol. 153: 1069–1071Google Scholar
  9. Bauer JE & Capone DG (1985) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl. Environ. Microbiol. 50: 80–90Google Scholar
  10. Bauer JE & Capone DG (1988) Effects of co-occurring aromatic hydrocarbons on the degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Appl. Environ. Microbiol. 54: 1649–1655Google Scholar
  11. Boronin AM, Kochetkov VV & Skryabin GK (1980) Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Microbiol. Lett. 7: 249–252Google Scholar
  12. Brusseau GA, Hsien-Chyang T, Hanson RS & Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29Google Scholar
  13. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55: 154–158Google Scholar
  14. Bumpus JA, Tien M, Wright D & Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436Google Scholar
  15. Cane PA & Williams PA (1982) The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains. Phenotypic changes correlated with structural modification of the plasmid PWW60–1. J. Gen. Microbiol. 128: 2281–2290Google Scholar
  16. Catterall FA, Murray K & Williams PA (1971) The configuration of the 1,2-dihydroxy-1,2-dihydronaphthalene formed by the bacterial metabolism of naphthalene. Biochem. Biophys. Acta 237: 361–364Google Scholar
  17. Cerniglia CE (1982) Initial reactions in the oxidation of anthracene by Cunninghamella elegans. J. Gen. Microbiol. 128: 2055–2061Google Scholar
  18. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Laskin A (Ed) Advances in Applied Microbiology, Vol 30 (pp 31–71). Academic Press, New YorkGoogle Scholar
  19. Cerniglia CE & Crow SA (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129: 9–13Google Scholar
  20. Cerniglia CE & Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl. Environ. Microbiol. 34: 363–370Google Scholar
  21. Cerniglia CE & Gibson DT (1978) Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. 186: 121–127Google Scholar
  22. Cerniglia CE & Gibson DT (1979) Oxidation of benzo(a)pyrene by the filamentous fungus Cunninghamella elegans. J. Biol. Chem. 254: 12174–12180Google Scholar
  23. Cerniglia CE & Gibson DT (1980a) Fungal oxidation of benzo (a)pyrene and (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a) pyrene: evidence for the formation of a benzo(a)pyrene 7,8-diol-9,10-epoxide. J. Biol. Chem. 255: 5159–5163Google Scholar
  24. Cerniglia CE & Gibson DT (1980b) Fungal oxidation of (±)-9,10-dihydroxy-9,10-dihydrobenzo(a)pyrene: formation of diastereomeric benzo(a)pyrene 9,10-diol 7,8-epoxides. Proc. Natl. Acad. Sci. U.S.A. 77: 4554–4558Google Scholar
  25. Cerniglia CE & Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U (Ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment (pp 41–68). CRC Press, Boca Raton, FLGoogle Scholar
  26. Cerniglia CE & Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 47: 119–124Google Scholar
  27. Cerniglia CE, Hebert RL, Dodge RH, Szaniszlo PJ & Gibson DT (1978) Fungal transformation of naphthalene. Arch. Microbiol. 117: 135–143Google Scholar
  28. Cerniglia CE, Gibson DT & Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum strain PR-6. Biochem. Biophys. Res. Commun. 88: 50–58Google Scholar
  29. Cerniglia CE, Van Baalen C & Gibson DT (1980a) Metabolism of naphthalene by the blue-green alga, Oscillatoria sp., strain JCM. J. Gen. Microbiol. 116: 485–495Google Scholar
  30. Cerniglia CE, Gibson DT & Van Baalen C (1980b) Algal oxidation of naphthalene. J. Gen. Microbiol. 116: 495–500Google Scholar
  31. Cerniglia CE, Mahaffey W & Gibson DT (1980c) Fungal oxidation of benzo(a)pyrene: formation of (−)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene by Cunninghamella elegans. Biochem. Biophys. Res. Commun. 94: 226–232Google Scholar
  32. Cerniglia CE, Dodge RH & Gibson DT (1980d) Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot. Mar. 23: 121–124Google Scholar
  33. Cerniglia CE, Gibson DT & Van Baalen C (1982) Aromatic hydrocarbon oxidation by diatoms isolated from the Kachemak Bay region of Alaska. J. Gen. Microbiol. 128: 987–990Google Scholar
  34. Cerniglia CE, Althaus JR, Evans FE, Freeman JP, Mitchum RK & Yang SK (1983a) Stereochemistry and evidence for an arene-oxide-NIH shift pathway in the fungal metabolism of naphthalene. Chem.-Biol. Interact. 44: 119–132Google Scholar
  35. Cerniglia CE, Fu PP & Yang SK (1983b) Regio- and stereoselective metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans. Biochem. J. 216: 377–384Google Scholar
  36. Cerniglia CE, Freeman JP & Evans FE (1984) Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol in Bacillus cereus. Arch. Microbiol. 138: 283–286Google Scholar
  37. Cerniglia CE, White GL & Heflich RH (1985a) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Arch. Microbiol. 143: 105–110Google Scholar
  38. Cerniglia CE, Freeman JP, White GL, Heflich RH & Miller DW (1985b) Fungal metabolism and detoxification of the nitropolycyclic aromatic hydrocarbon, 1-nitropyrene. Appl. Environ. Microbiol. 50: 649–655Google Scholar
  39. Cerniglia CE, Kelly DW, Freeman JP & Miller DW (1986) Microbial metabolism of pyrene. Chem.-Biol. Interact. 57: 203–216Google Scholar
  40. Cerniglia CE, Campbell WL, Freeman JP & Evans FE (1989) Metabolism of phenanthrene by the fungus Cunninghamella elegans: identification of a novel metabolite. Appl. Environ. Microbiol. 55: 2275–2279Google Scholar
  41. Cerniglia CE, Campbell WL, Fu PP, Freeman JP & Evans FE (1990) Stereoselective fungal metabolism of methylated anthracenes. Appl. Environ. Microbiol. 56: 661–668Google Scholar
  42. Cerniglia CE, Sutherland JB & Crow SA (1992) Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G (Ed) Microbial Degradation of Natural Products (pp 193–217). VCH Press, WeinheimGoogle Scholar
  43. Chapman PJ (1979) Degradation mechanisms In: Bourquin AW & Pritchard PH (Eds) Proceedings of the workshop: Microbial Degradation of Pollutants in Marine Environments (pp 28–66). U.S. Environmental Protection Agency, Gulf Breeze, FLGoogle Scholar
  44. Cody TE, Radike MJ & Warshawsky D (1984) The phytotoxicity of benzo[a]pyrene in the green alga, Selenastrum capricornutum. Environ. Res. 35: 122–131Google Scholar
  45. Colby J & Dalton H (1976) Some properties of a soluble methane monooxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157: 495–497Google Scholar
  46. Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402Google Scholar
  47. Colby J, Stirling DI & Dalton H (1978) Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171: 461–468Google Scholar
  48. Colla A, Fiecchi A & Treccani V (1959) Ricerche sul metabolismo ossidativo microbico dell'antracene e del fenantrene. Ann. Microbiol. 9: 87–91Google Scholar
  49. Connors MA & Barnsley EA (1982) Naphhalene plasmids in pseudomonads. J. Bacteriol. 149: 1096–1101Google Scholar
  50. Dagley S (1971) Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 6: 1–46Google Scholar
  51. Dagley S (1975) A biochemical approach to some problems of environmental pollution. Essays Biochem. 11: 81–138Google Scholar
  52. Dalton H, Golding BT, Waters BW, Higgins R & Taylor JA (1981) Oxidations of cyclopropane, methylcyclopropane, and arenes with the mono-oxygenase system from Methylococcus capsulatus. J. Chem. Soc. Chem. Commun. 1981: 482–483Google Scholar
  53. Davies JI & Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads Biochem. J. 91: 251–261Google Scholar
  54. Dipple A, Cheng SC & Bigger CAH (1990) Polycyclic aromatic hydrocarbon carcinogens In: Pariza MW, Aeschbacher HU, Felton JS & Sato S (Eds) Mutagens and Carcinogens in the Diet (pp 109–127). Wiley-Liss, New YorkGoogle Scholar
  55. Dua RD & Meera S (1981) Purification and characterization of naphthalene oxygenase from Corynebacterium renale. Eur. J. Biochem. 120: 461–465Google Scholar
  56. Dunn NW & Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 114: 974–979.Google Scholar
  57. Ellis B, Harold P & Kronberg H (1991) Bioremediation of a creosote contaminated site. Environ. Technol. 12: 447–459Google Scholar
  58. Ensley BD & Gibson DT (1983) Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 155: 505–511Google Scholar
  59. Ensley BD, Gibson DT & LaBorde LA (1982) Naphthalene dioxygenase: purification and properties of a termined oxygen component. J. Bacteriol. 149: 948–954Google Scholar
  60. Ensley BD, Osslund TD, Joyce M & Simon MJ (1987) Expression and complementation of naphthalene dioxygenase activity in Escherichia coli. In: Hagedorn SR Hanson RS &Kunz DA (Eds) Microbial Metabolism and the Carbon Cycle (pp 437–455). Harwood Academic Publishers, New YorkGoogle Scholar
  61. Evans WC, Fernley HN & Griffiths E (1965) Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads; the ring fission mechanism. Biochem. J. 95: 819–821Google Scholar
  62. Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW & Jeffrey AM (1973) Mono-oxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch. Biochem. Biophys. 156: 97–103Google Scholar
  63. Field JA, DeJong E, Costa GF & DeBont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 58: 2219–2226Google Scholar
  64. Foght JM & Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135–1141Google Scholar
  65. Garcia-Valdes E, Cozar E, Rotger R, Lalucat J & Ursing J (1988) New naphthalene-degrading marine Pseudomonas strains. Apl. Environ. Microbiol. 54: 2478–2485Google Scholar
  66. Ghosh DK & Mishra AK (1983) Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr. Microbiol. 9: 219–224Google Scholar
  67. Ghosh DK, Dutta D, Samanta TB & Mishra AK (1983) Microsomal benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS: Assay and characterization of the enzyme system. Biochem. Biophys. Res. Commun. 113: 497–505Google Scholar
  68. Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed). Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker, New YorkGoogle Scholar
  69. Gibson DT, Koch JR & Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7: 2653–2661Google Scholar
  70. Gibson DT, Mahadevan V, Jerina DM, Yagi H & Yeh HJC (1975) Oxidation of the carcinogens benzo[a]pyrene and benz[a]anthracene to dihrdrodiols by a bacterium. Science 189: 295–297Google Scholar
  71. Gibson DT, Zylstra GJ & Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1 In: Silver S, Chakrabarty AM, Iglewski B & Kaplan S (Eds) Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (pp 121–132). American Society for Microbiology, Washington, DCGoogle Scholar
  72. Giger W & Blumer M (1974) Polycyclic aromatic hydrocarbons in the environment; isolation and characterization by chromatography, visible, ultraviolet and mass spectrometry. Anal. Chem. 46: 1663–1671Google Scholar
  73. Gold MH, Wariishi H & Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. In: Whitaker JR & Sonnet PE (Eds) Biocatalysis in Agricultural Biotechnology (pp 127–140). American Chemical Society, Washington, DCGoogle Scholar
  74. Grbic-Galic D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260Google Scholar
  75. Grosser RJ, Warshawsky D & Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene and carbazole in soils. Appl. Environ. Microbiol. 57: 3462–3469Google Scholar
  76. Grund E, Denecke B & Eichenlaub R (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Microbiol. 58: 1874–1877Google Scholar
  77. Gschwend PM & Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Acta 45: 2359–2367Google Scholar
  78. Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54: 937–944Google Scholar
  79. Guerin WF & Jones GE (1989) Estuarine ecology of phenanthrene-degrading bacteria. Estuarine Coastal Shelf Sci. 29: 115–130Google Scholar
  80. Haemmerli SD, Leisola MSA, Sanglard D & Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J. Biol. Chem. 261: 6900–6903Google Scholar
  81. Haigler BE & Gibson DT (1990a) Purification and properties of NADH-ferredoxin NAP reductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 457–464Google Scholar
  82. Haigler BE & Gibson DT (1990b) Purification and properties of ferredoxin NAP, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172: 465–468Google Scholar
  83. Hammel KE (1989) Organopollutant degradation by ligninolytic fungi. Enzyme Microb. Technol. 11: 776–777Google Scholar
  84. Hammel KE, Kalyanaraman B & Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporiumm. J. Biol. Chem. 261: 16948–16952Google Scholar
  85. Hammel KE, Green B & Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc. Natl. Acad. Sci. 88: 10605–10608Google Scholar
  86. Hammel KE, Gai ZG, Green B & Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 1831–1838Google Scholar
  87. Heitkamp MA & Cerniglia CE (1987) The effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystem. Environ. Toxicol. Chem. 6: 535–546Google Scholar
  88. Heitkamp MA & Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54: 1612–1614Google Scholar
  89. Heitkamp MA & Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55: 1968–1973Google Scholar
  90. Heitkamp MA, Freeman JP & Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl. Environ. Microbiol. 53: 129–136Google Scholar
  91. Heitkamp MA, Franklin W & Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54: 2556–2565Google Scholar
  92. Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1991) Biodegradation of 1-nitropyrene. Arch. Microbiol. 156: 223–230Google Scholar
  93. Herbes SE & Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum contaminated sediments. Appl. Environ. Microbiol. 35: 306–316.Google Scholar
  94. Hites RA, LaFlamme RE & Farrington JW (1977) Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science 198: 829–831Google Scholar
  95. Hites RA, LaFlamme RE & Windsor JG (1980) Polycyclic aromatic hydrocarbons in marine/aquatic sediments: their ubiquity. In: Petrakis L & Weiss FT (Eds) Petroleum in the Marine Environment (pp 289–311). Advances in Chemistry Series, American Chemical Society, Washington, DCGoogle Scholar
  96. Holland HL, Khan SH, Richards D & Riemland E (1986) Biotransformation of polycyclic aromatic compounds by fungi. Xenobiotica 16: 733–741Google Scholar
  97. Jacob J, Karcher W, Belliardo JJ & Wagstaffe PJ (1986) Polycyclic aromatic hydrocarbons of environmental and occupational importance. Fresenius, Z. Anal. Chem. 323: 1–10Google Scholar
  98. Jeffrey AM, Yeh HJC, Jerina DM, Patel RT, Davey JF & Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14: 575–584Google Scholar
  99. Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V & Gibson DT (1976) Dihydrodiols from anthracene and phenanthrene. J. Am. Chem. Soc. 98: 5988–5996Google Scholar
  100. Johnson AC & Larsen D (1985) The distribution of polycyclic aromatic hydrocarbons in the surficial sedimentsss of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide. Mar. Environ. Res. 15: 1–16Google Scholar
  101. Jones KC, Stratford A, Waterhouse KS & Vogt NB (1989) Organic contaminants in Welsh soils: polynuclear aromatic hydrocarbons. Environ. Sci. Technol. 13: 540–550Google Scholar
  102. Keck J, Sims RC, Coover M, Park K & Symons B (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Wat. Res. 23: 1467–1476Google Scholar
  103. Keith LH & Telliard WA (1979) Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416–423Google Scholar
  104. Kelley I & Cerniglia CE (1991) The metabolism of fluoranthene by a species of Mycobacterium. J. Ind. Microbiol. 7: 19–26Google Scholar
  105. Kelley I, Freeman JP & Cerniglia CE (1991a) Identification of metabolites from the degradation of naphthalene by a Mycobacterium sp. Biodegradation 1: 283–290Google Scholar
  106. Kelley I, Freeman JP, Evans FE & Cerniglia CE (1991b) Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium sp. Appl. Environ. Microbiol. 57: 636–641Google Scholar
  107. Keuth S & Rehm H-J (1991) Biodegradation of phenanthrene by Arthrobacter polychromogenes isolated from a contaminated soil. Appl. Microbiol. Biotechnol. 34: 804–808Google Scholar
  108. Kiyohara H & Nagao K (1978) The catabolism of phenanthrene and naphthalene by bacteria. J. Gen. Microbiol. 105: 69–75Google Scholar
  109. Kiyohara H, Nagao K & Nomi R (1976) Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric. Biol. Chem. 40: 1075–1082Google Scholar
  110. Kiyohara H, Nagao K, Kouno K & Yano K (1982) Phenanthrene degrading phenotype of Alcaligenes faecalis AFK2. Appl. Environ. Microbiol. 43: 458–461Google Scholar
  111. Kiyohara H, Takizawa N, Date H, Torigoe S & Yano K (1990) Characterization of a phenanthrene degradation plasmid from Alcaligenes faecalis AFK2. J. Ferment. Bioeng. 69: 54–56Google Scholar
  112. Kuhm AE, Stolz A & Knackmuss HJ (1991) Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation 2: 115–120Google Scholar
  113. LaFlamme RE & Hites RA (1978) The global distribution of polycyclic aromatic hydrocarbons in recent sediment. Geochim. Cosmochim. Acta 42: 289–303Google Scholar
  114. Lijinsky W (1991) The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259: 251–261Google Scholar
  115. Lin WS & Kapoor M (1979) Induction of aryl hydrocarbon hydroxylase in Neurospora crassa by benzo[a]pyrene. Curr. Microbiol. 3: 177–181Google Scholar
  116. Lindquist B & Warshawsky D (1985) Identification of the 11,12-dihydroxybenzo[a]pyrene as a major metabolite produced by the green alga, Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 130: 71–75Google Scholar
  117. Mahaffey WR, Gibson DT & Cerniglia CE (1988) Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415–2423Google Scholar
  118. Manilal VB & Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 35: 401–405Google Scholar
  119. McMillan DC, Fu PP & Cerniglia CE (1987) Stereoselective fungal metabolism of 7,12-dimethylbenz[a]anthracene: identification and enantiomeric resolution of a K-region dihydrodiol. Appl. Environ. Microbiol. 53: 2560–2566Google Scholar
  120. McMillan DC, Fu PP, Freeman JP, Miller DW & Cerniglia CE (1988) Microbial metabolism and detoxification of 7,12-dimethylbenz[a]anthracene. J. Ind. Microbiol. 3: 211–225Google Scholar
  121. Means JC, Ward SG, Hassett JJ & Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14: 1524–1528Google Scholar
  122. Mihelcic JR & Luthy RG (1987) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 53: 1182–1187Google Scholar
  123. Mihelcic JR & Luthy RG (1988) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198Google Scholar
  124. Miller EC & Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47: 2327–2345Google Scholar
  125. Morgan P, Lewis ST & Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34: 693–696Google Scholar
  126. Mueller JG, Chapman PJ & Pritchard PH (1989) Action of a fluoranthene-utilizing bacterial community on polycyclic aromatic hydrocarbon components of creosote. Appl. Environ. Microbiol. 55: 3085–3090Google Scholar
  127. Mueller JG, Chapman PJ, Blattmann BO & Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56: 1079–1086Google Scholar
  128. Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992a) Evidence of NIH shift in naphthalene oxidation by the marine cyanobacterium, Oscillatoria species strain JCM. Appl. Environ. Microbiol. 58: 1360–1363Google Scholar
  129. Narro ML, Cerniglia CE, Van Baalen C & Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum, strain PR-6. Appl. Environ. Microbiol. 58: 1351–1359Google Scholar
  130. Park KS, Sims RC, Dupont RR, Doucette WJ & Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ. Toxicol. Chem. 9: 187–195Google Scholar
  131. Patel TR & Gibson DT (1974) Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol. 119: 879–888Google Scholar
  132. Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl. Environ. Microbiol. 56: 2974–2983Google Scholar
  133. Pothuluri JV, Heflich RH, Fu PP & Cerniglia CE (1992a) Fungal metabolism and detoxification of fluoranthene. Appl. Environ. Microbiol. 58: 937–941Google Scholar
  134. Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1992b) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl. Environ. Microbiol. 58: 3654–3659Google Scholar
  135. Ryu BH, Oh YK & Bin JH (1989) Biodegradation of naphthalene by Acinetobacter calcoaceticus R-88. J. Kor. Agric. Chem. Soc. 32: 315–320Google Scholar
  136. Sanglard D, Leisola MSA & Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb. Technol. 8: 209–212Google Scholar
  137. Savino A & Lollini MN (1977) Identification of some fermentation products of phenanthrene in microorganisms of the genus Arthrobacter. Boll. Soc. Ital. Biol. Sper. 53: 916–921Google Scholar
  138. Schell MA (1983) Cloning and expression in Escherichia coli of the naphthalene degradative genes from plasmid NAH7. J. Bacteriol. 153: 822–829Google Scholar
  139. Schocken MJ & Gibson DT (1984) Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl. Environ. Microbiol. 48: 10–16Google Scholar
  140. Serdar CM & Gibson DT (1989) Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochem. Biophys. Res. Commun. 164: 772–779Google Scholar
  141. Shiaris MP (1989) Phenanthrene mineralization along a natural salinity gradient in an urban estuary, Boston Harbor, Massachusetts. Microb. Ecol. 18: 135–146Google Scholar
  142. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suen W-C, Cruden DL, Gibson DT & Zylstra GJ (1992) Nucleotide sequences encoding the genes for naphthalene dioxygenase in Pseudomonas putida G7 and Pseudomonas sp. NCIB 9816-4. Gene (in press)Google Scholar
  143. Sims JL, Sims RC & Matthews JE (1990) Approach to bioremediation of contaminated soil. Haz. Waste Haz. Mater. 7: 117–149Google Scholar
  144. Smith RV & Rosazza JP (1974) Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch. Biochem. Biophys. 161: 551–558Google Scholar
  145. Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind. Microbiol. 9: 53–62Google Scholar
  146. Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW & Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavorirens. Arch. Microbiol. 154: 260–266Google Scholar
  147. Sutherland JB, Selby AL, Freeman JP, Evans FE & Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 57: 3310–3316Google Scholar
  148. Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW & Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol. Res. 96: 509–517Google Scholar
  149. Tagger S, Truffaut N & Le Petit J (1990) Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from marine sediment. Can. J. Microbiol. 36: 676–681Google Scholar
  150. Tattersfield F (1927) The decomposition of naphthalene in the soil and the effect upon its insecticidal action. Ann. Appl. Biol. 15: 57–67Google Scholar
  151. Tausson WO (1927) Napthalin als Kohlenstoffquelle für Bakterien. Planta 4: 214–256Google Scholar
  152. Thakker DR, Yagi H, Levin W, Wood AW, Conney AH & Jerina DM (1985) Polycyclic aromatic hydrocarbons: Metabolic activation to ultimate carcinogens. In: Anders MW (Ed) Bioactivation of Foreign Compounds (pp 177–242). Academic Press, OrlandoGoogle Scholar
  153. Treccani V, Walker N & Wiltshire GH (1954) The metabolism of naphthalene by soil bacteria. J. Gen. Microbiol. 11: 341–348Google Scholar
  154. Trower MK, Sariaslani FS & Kitson FG (1988) Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem. Biophys. Res. Commun. 3: 1417–1422Google Scholar
  155. Utkin IB, Yakimov MM, Matveeva LN, Kozlyak EI, Rogozhin IS, Solomon ZG & Bezborodov AM (1990) Catabolism of naphthalene and salicylate by Pseudomonas fluorescens. Folia Microbiol. 35: 557–560Google Scholar
  156. Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202Google Scholar
  157. Walter U, Beyer M, Klein J & Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl. Microbiol. Biotechnol. 34: 671–676Google Scholar
  158. Wang X, Yu X & Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24: 1086–1089Google Scholar
  159. Warshawsky D, Radike M, Jayasimhulu K & Cody T (1988) Metabolism of benzo[a]pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem. Biophys. Res. Commun. 152: 540–544Google Scholar
  160. Warshawsky D, Keenan TM, Reilman R, Cody TE & Radike MJ (1990) Conjugation of benzo[a]pyrene metabolites by the freshwater green alga Selenastrum capricornutum. Chem.- Biol. Interact. 73: 93–105Google Scholar
  161. Weissenfels WD, Beyer M & Klein J (1990) Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Appl. Microbiol. Biotechnol. 32: 479–484Google Scholar
  162. Weissenfels WD, Beyer M, Klein J & Rehm HJ (1991) Microbial metabolism of fluoranthene: isolation and identification of ring fission products. Appl. Microbiol. Biotechnol. 34: 528–535Google Scholar
  163. West PA, Okpokwasili GC, Brayton PR, Grimes DJ & Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl. Environ. Microbiol. 48: 988–993Google Scholar
  164. Wild SR, Berrow ML & Jones KC (1991a) The persistence of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge amended agricultural soils. Environ. Pollut. 72: 141–157Google Scholar
  165. Wild SR, Obbard JP, Munn CI, Berrow ML & Jones KC (1991b) The long-term persistence of polynuclear aromatic hydrocarbons (PAHs) in an agricultural soil amended with metal-contaminated sewage sludges. Sci. Total Environ. 101: 235–253Google Scholar
  166. Williams PA (1981) Genetics of biodegradation. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp 97–107). Academic Press, New YorkGoogle Scholar
  167. Wiseman A & Woods LFJ (1979) Benzo[a]pyrene metabolites formed by the action of yeast cytochrome P-450/P-448. J. Chem. Technol. Biotechnol. 29: 320–324Google Scholar
  168. Yen KM & Gunsalus IC (1982) Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 79: 874–878Google Scholar
  169. Yen KM & Serdar CM (1988) Genetics of naphthalene catabolism in Pseudomonads. CRC Crit. Rev. Microbiol. 15: 247–267Google Scholar
  170. Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. In: Setlow JK (Ed) Genetic Engineering: Principles and Methods, Vol 13 (pp 183–203). Plenum Press, New YorkGoogle Scholar
  171. Zylstra GJ, Chauhan S & Gibson DT (1990) Degradation of chlorinated biphenyls by Escherichia coli containing cloned genes of the Pseudomonas putida F1 toluene catabolic pathway. In: Proceedings of the Sixteenth Annual Hazardous Waste Research Symposium: Remedial Action, Treatment, and Disposal of Hazardous Waste (pp 290–302). (EPA/600/9-90/037)Google Scholar
  172. Zylstra GJ, Cuskey SM & Olsen RH (1991) Construction of plasmids for use in risk assessment research. In: Levin MA, Seidler RJ & Rogul M (Eds) Microbial Ecology: Principles, Methods, and Applications (pp 363–370). McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Carl E. Cerniglia
    • 1
  1. 1.Microbiology DivisionNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations