Journal of the History of Biology

, Volume 18, Issue 1, pp 71–102 | Cite as

The historical bases of the concept of allelopathy

  • R. J. Willis


In the light of contemporary allelopathic research, the intuitively based statements of the early botanists stand up surprisingly well. The walnut tree is now understood to affect the growth of neighboring plants via juglone leached from the leaves, roots, and fruits.118 The replant or soil sickness problem of peach orchards has been related to the toxigenic breakdown of amygdalin, a constituent of peach roots.119 The declining yield of many crop species grown under continuous monoculture has been linked to the accumulation of allelopathic substances in the soil, especially through the mediation of microorganisms.120 Numerous plants cited by de Candolle as being injurious, such as Erigeron,121 thistle (Cirsium),122 flax (Linum),123 and various crucifers (such as Brassica nigra),124 have been found to posses marked allelopathic activity. Over fifty years before the discovery of rhizobia, de Candolle considered the excretory material of legumes to be beneficial to cereals.125

Modern reviews of allelopathy commonly credit de Candolle with an insight that was not equaled by the technology of his era.126 In fairness to his detractors, his toxin theory of plant interactions was largely the by-product of an outdated and misconstrued notion of plant nutrition. His critics and most earlier botanists had similarly erred in seeking a single factor responsible for plant growth, much as had the alchemists sought the legendary philosopher's stone. Taking all this into account and considering the forceful personality of Liebig, one can readily appreciate how, 130 years ago, Liebig's theories preempted and stifled those of de Candolle.

Today, with modern techniques of plant physiology and soil biochemistry, allelopathy has been shown to be a real but subtle factor in the dynamics of natural and agricultural plant communities. It is unfortunate that the single-mindedness characteristic of previous centuries still persists. The dichotomy between allelopathy and competition is exacerbated by the inherited bias toward the nutritional model of plant interaction fostered by Liebig, and is accentuated in the fact that in modern nutritional studies it is still basically unnecessary to consider plant-plant chemical interactions and their concomitant effects, whereas in allelopathic investigations the converse is regarded as axiomatic.

In summary, de Candolle should not be seen as “a prophet crying in the wilderness,” as Fisher would have it.127 The bases of de Candolle's concept of allelopathy were the dubious experiments of Macaire and his own obsolete theory of plant nutrition. Despite this, modern experimental work indicates that allelopathy is important in many plant interactions. De Candolle seems to have been right, at least in part—but for the wrong reasons.


Plant Interaction Allelopathic Activity Walnut Tree Peach Orchard Allelopathic Substance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Molisch Der Einfluss einer Pflanze auf die andere: Allelopathie (Jena: Gustav Fischer, 1937), p. 20.Google Scholar
  2. 2.
    E. L. Rice, Allelopathy (New York: Academic Press, 1974), p. 1; “Allelopathy — an Update,” Bot. Rev., 45 (1979), 15–109.Google Scholar
  3. 3.
    Recent major reviews, in addition to those by Rice, include A. M. Grodzinskii, Osnovy Khimichnoi Vzaemodii Roslin Kiev: Naukova Dumka, 1973); R. F. Fisher, “Allelopathic Interference among Plants: I. Ecological Significance,” in Proc. Fourth N. Amer. Forest Biol. Workshop, ed. H. E. Wilcox and A. F. Hamer, (Syracuse: State University of New York, College of Environmental Science and Forestry, 1977), pp. 73–94; S. B. Horsley, “Allelopathic Interference among Plants: II. Physiological Modes of Action,” ibid., pp. 96–136.Google Scholar
  4. 4.
    J. L. Harper, “New Biological Books: Allelopathy by E. L. Rice”, Quart. Rev. Biol., 50 (1975), 493–495; Population Biology of Plants (London: Academic Press, 1977), pp. 369–381.Google Scholar
  5. 5.
    N. C. Brady, The Nature and Property of Soils (New York: Macmilan, 1974); J. Turner and P. R. Olson, “Nitrogen Relations in a Douglas Fir Plantation,” Ann. Bot. (Lond.), 40 (1976), 1185–93.Google Scholar
  6. 6.
    H. G. C. King and C. Bloomfield, “The Reaction between Water-Soluble Tree Leaf Constituents and Ferric Oxide in Relation to Podzolization,” J. Sci. Food Agr., 17 (1966), 39–43; T. P. Murphy, D. R. S. Lean, and C. Nalewajko, “Blue-Green Algae: Their Excretion of Iron Selective Chelators Enables Them to Dominate Other Algae,” Science, 192 (1976), 900–902.Google Scholar
  7. 7.
    D. Frood, “Dynamics of Post-1951 Fire Heathland, Tidal Overlook, Wilson's Promontory, Victoria,” honors thesis, University of Melbourne, 1979. In this study young plants of Casuarina pusilla were grown in pots placed under a canopy of Eucalyptus baxteri in the field; for background see R. del Moral et al., “Supression of Coastal Health Vegetation by Eucalyptus baxteri,” Aust. J. Bot., 26 (1978), 203–219. Special pots were constructed, which allowed control seedlings to be shielded from canopy drip. In a further control the drip was redirected to the seedling to establish the effect of the shield. Seedlings protected from leachate showed markedly better growth compared with those receiving leachate; however, the probability of the difference established by t-test was only 0.06 (df-21).Google Scholar
  8. 8.
    L. G. Stowe, “Allelopathly and Its Influence on the Distribution of Plants in an Illinois Old-Field,” J. Ecol., 67 (1979), 1065–85.Google Scholar
  9. 9.
    See notes and 3.Google Scholar
  10. 10.
    T. A. Rabotnov, “On the Allelopathy in the Phytocoenoses,” Izv. Akad. Nauk S.S.S.R. ser. Biol., 1974 (6), 811–820; “Importance of the Evolutionary Approach to the Study of Allelopathy,” Sov. J. Ecol., 12 (1982), 127–130.Google Scholar
  11. 11.
    See for example R. F. Fisher, “Allelopathy”, in Plant Disease, ed. J. G. fnHorsfall and E. B. Cowling (New York: Academic Press, 1979), IV, 313–330; S. C. Datta and S. P. Sinha-Roy, “Allelopathy and Inhibitors,” Sci. Cult., 40 (1974), 47–59; Rice, Allelopathy, p. 3.Google Scholar
  12. 12.
    L. Robin, Greek Thought and the Origins of the Scientific Spirit (London: Routledge and Kegan Paul, 1928), pp. 106, 294–295.Google Scholar
  13. 13.
    Theophrastus, Enquiry into Plants and Minor Works on Odours and Weather Signs (De causis plantarum), trans. A. Hort (London: W. Heinemann, 1916), I, 185.Google Scholar
  14. 14.
    Varro, On Agriculture (Rerum rusticarum), trans. W. D. Hooper (London: W. Heinemann, 1934), bk. 1, sec. 26, pp. 246–247: see translator's note 2.Google Scholar
  15. 15.
    Theophrastus, Enquiry, II, 185.Google Scholar
  16. 16.
    Cato, On Agriculture (De agri cultura), trans. W. D. Hooper (London: W. Heinemann, 1934), sec. 37, p. 53.Google Scholar
  17. 17.
    C. D. Lewis, The Georgics of Virgil (London: J. Cape, 1940), bk. 1, p. 17; see also Columella, On Agriculture (Res rustica), publ. with On Trees (De arboribus), trans. H. B. Ash (London: W. Heinemann, 1941–55), bk. 2, sec. 13, I, 193.Google Scholar
  18. 18.
    Columella, On Trees, sec. 3, III, 351; Geoponica, Agricultural Pursuits (De re rustics), trans. T. Owen (London, 1805), bk. 5, sec. 19; Palladius, De re rustica (Saxony, Gottlob Schneider, 1795), bk. 2, sec. 13.Google Scholar
  19. 19.
    Columella, On Agriculture, bk. 3, sec. 11, I, 301.Google Scholar
  20. 20.
    J. D. Hughes, Ecology of Ancient Civilizations (Albuquerque: University of New Mexico Press, 1975), p. 134.Google Scholar
  21. 21.
    E. Huntingdon and S. W. Cushing, Principles of Human Geography (New York: John Wiley, 1924); E. C. Semple, The Geography of the Mediterranean Region (New York: Henry Holt, 1931).Google Scholar
  22. 22.
    Pliny, Natural History, trans. H. Rackham (London: W. Heinemann, 1938–62), bk. 17, sec. 37, V, 165–166; see also bk. 24, sec. 1, VII, 3.Google Scholar
  23. 23.
    Pliny, Natural History, trans. H. Rackham (London: W. Heinemann, 1938–62), bk. 17, sec. 18, V, 63; one of the best documented cases of allelopathy is that of the walnut (Juglans nigra), via its product juglone.Google Scholar
  24. 24.
    Pliny, Natural History, trans. H. Rackham (London: W. Heinemann, 1938–62), bk. 24, sec. 1, VII, 3.Google Scholar
  25. 25.
    Pliny, Natural History, trans. H. Rackham (London: W. Heinemann, 1938–62), bk. 17, sec. 12, V, 47.Google Scholar
  26. 26.
    Ibn al-Awwam, Le Livre de l'agriculture d'Ibn al-Awwam, trans. J. J. Clement-Mullet (Paris: J. Franck, 1864–67), pp. 518–527.Google Scholar
  27. 27.
    H. S. Reed, A Short History of the Plant Sciences (Waltham, Mass.: Chronica Botanica, 1942).Google Scholar
  28. 28.
    P. de Crescenzi, Liber Ruralium Commodorum (Venice: J. Rubens, Albertinus and Bernardius, 1511).Google Scholar
  29. 29.
    Theophrastus Bombast von Hohenheim Paracelsus, Der Bucher und Schriften des edlen Philipi Theophrasti Bombast von Hohenheim (Basel: G. Waldkirch, 1589–91), VII, 152–162.Google Scholar
  30. 30.
    G. Cardano, Les Livres de Hierome Cardanus, intitulés de la subtilité (Paris: C. Micard, 1566).Google Scholar
  31. 31.
    J. Evelyn, Terra, a Philosophical Discourse of Earth; appendixed to Sylva, or a Discourse of Forest Trees, and the Propagation of Timber in her Majesties Dominion (London: J. Martyn, 1679).Google Scholar
  32. 32.
    J. Evelyn, Silva, or a Discourse of Forest Trees, and the Propagation of Timber in his Majesties Dominions, ed. A. Hunter (London: J. Martyn, 1776).Google Scholar
  33. 33.
    J. Smith, A Dictionary of Popular Names of the Plants which Furnish the Natural and Acquired Wants of Man, in all Matters of Domestic and General Economy (London: Macmillan, 1882), p. 40.Google Scholar
  34. 34.
    H. Lee, The Vegetable Lamb of Tartary (London: Sampson Low, Morston, Searle and Rivington, 1887).Google Scholar
  35. 35.
    N. P. Foersch, “Description of the Poison-Tree in the Island of Java,” London Mag., 52 (1783), 512–517; also in E. Darwin, The Botanic Garden (London: J. Johnson, 1791).Google Scholar
  36. 36.
    J. Lindley, A Treasury of Botany (London: Longmans, Green, 1866), pt. 1, pp. 74–75.Google Scholar
  37. 37.
    I. K. Lee and M. Monsi, “Ecological Studies on Pinus densiflora. I. Effect of Plant Substances on the Floristic Composition of the Undergrowth,” Bot. Mag. (Tokyo), 76 (1963), 400–413; after S. Ota, Conservation of Forest Lands (Sapporo: Chisan Konwa Kai, 1961); in Japanese.Google Scholar
  38. 38.
    F. Delaporte, Le seconde Règne de la nature: essai sur les questions de vegetalité au XVIIIe siècle (Paris: Flammarion, 1979).Google Scholar
  39. 39.
    S. Hales, Vegetable Staticks: or an Account of some Statical Experiments on the Sap in Vegetation (London: W. and J. Innys, 1727), pp. 85–86.Google Scholar
  40. 40.
    For example, F. E. Clements, Aeration and Air Content: The Role of Oxygen in Root Activity (Washington, D.C.: Carnegie Institution, 1921).Google Scholar
  41. 41.
    H. Boerhaave, A New Method of Chemistry, including the History, Theory and Practice of the Art (London: J. Osborn and T. Longman, 1727), p. 145. Reference to the excretory role of roots is to be found only in the 1724 (Paris) and 1727 (London) editions, which Boerhaave claimed to be unauthorized, according to C. A. Browne, A Sourcebook of Agricultural Chemistry (Waltham, Mass.: Chronica Botanica, 1944), p. 106.Google Scholar
  42. 42.
    S. Hales, Vegetable Staticks: or an Account of some Statical Experiments on the Sap in Vegetation (London: W. and J. Innys, 1727), p. 85.Google Scholar
  43. 43.
    J. Worledge, Systema agriculturae (London, 1698); J. Tull, The New Horse and Hoeing Husbandry, or an Essay on the Principles of Tillage and Vegetation (London: T. Osborn and J. Shipton, 1756); T. Wildman, Treatise on the Culture of Peaches (London, 1768).Google Scholar
  44. 44.
    J. Siosteen, K. Sv. Vet.-acadas Handl., 10 (1749); J. Brauner, Tankar om akerns rätta anlaggning, skötsel och såning, samlade gensm försök, samt noga beskrifning på de der til nödwändige redskaper (Stockholm, 1751), cited by A. Aamisepp and H. Osvald, “Influence of Higher Plants upon Each Other — Allelopathy,” Nova Acta R. Soc. Scient. Upsal., ser. 4, 18 (1961), 1–19.Google Scholar
  45. 45.
    H. L. Duhamel du Monceau, Traite des arbres et arbustis qui se cultivent en France en plein terre (Paris, 1755).Google Scholar
  46. 46.
    M. H. de Marquis Saint-Simon, Des Jacintes, de leur anatomie, reproduction et culture (Amsterdam, 1768).Google Scholar
  47. 47.
    Seconadry sources such as von Humboldt and Unger refer to Brugmans' early observations as being with Viola arvensis; however, I can find no firsthand report of this.Google Scholar
  48. 48.
    S. J. Brugmans, Dissertatio de Lolio ejusdemque varia specie, noxu et usu (1785), cited in J. V. Coulon and S. J. Brugmans, Dissertatio academica de mutata humorum in regno organico indole a vi vasorum vitale derivanda (Batavia: A. and J. Honkoop, 1789), pp. 77–79.Google Scholar
  49. 49.
    J. Senebier, Physiologie végétale, contenant une description des organes des plantes, et une exposition des phenomènes produit par leur organisation (Geneva: J. J. Paschoud, 1800), I, 315–317.Google Scholar
  50. 50.
    H. Cotta, Naturbeobachtungen über die Bewegung und Funktion des Saftes in den Gewächsen, mit vorzüglicher Hinsicht auf Holzpflanzen (Weimar: Hoffman, 1806), pp. 47–50.Google Scholar
  51. 51.
    C. P. J. Sprengel, Bau und der Natur der Gewächse (Halle: K. Kummel, 1812), p. 405.Google Scholar
  52. 52.
    E. H. F. Meyer, De plantis labradoricis libri tres (Leipzig, 1830), p. 29.Google Scholar
  53. 53.
    F. H. A. Freiherr von Humboldt, Aphorismen aus der chemischen Physiologie der Pflanzen (Leipzig: G. Fischer, 1794), pp. 184–192; Ideen zu einer Geographie der Pflanzen nebst einem Naturgemalde der Tropenländer (Tübingen, 1807).Google Scholar
  54. 54.
    J. J. Plenk, Physiologia et pathologia plantarum (Vienna, 1794).Google Scholar
  55. 55.
    C. F. B. Mirbel, Traite d'anatomie et de physiologie végétales, pour servir d'introduction à l'étude de la botanique (Paris: Dufart, 1802), I, 142–149.Google Scholar
  56. 56.
    D. H. F. Link, Grundlehren der Anatomie und Physiologie der Pflanzen (Göttingen: J. F. Danckwerts, 1807–9), I, 136.Google Scholar
  57. 57.
    J. P. Moldenhawer, Beytrage zur Anatomie der Pflanzen (Kiel, 1812).Google Scholar
  58. 58.
    J. Murray, “On the Physiology of the Roots in Plants,” Edinburgh Phil. J., 7 (1822), 329–331.Google Scholar
  59. 59.
    G. B. Gortinskii, “Allelopathy and Experiments of Soviet Studies from the Early 20th Century,” Byull. mosk. O-va. Ispyt. Prir., Otd. biol., 71 (1966), 128–133; Grodzinskii, Osnovy Khimichnoi, p. 10.Google Scholar
  60. 60.
    N. M. Maksimovich-Ambodik, Pervonachalnye botaniki osnovaniya (St. Petersburg, 1796).Google Scholar
  61. 61.
    Maksimovich-Ambodik was the Russian translator of J. J. Plenk's Vrachebnyya nastavleniya o bolyeznyakh naibolee iznuryayushchikh zdravie chelovka (St. Petersburg, 1800).Google Scholar
  62. 62.
    J. B. de Lamarck and A. P. de Candolle, Flore française, ou description succinte de toutes les plantes qui croissent naturellement en France, 3 rd ed. (Paris, 1805–15), I, 167, 191–192.Google Scholar
  63. 63.
    A. P. de Candolle, Essai sur la théorie des assolemens (Geneva, 1831).Google Scholar
  64. 64.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonctions vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 1495–97.Google Scholar
  65. 65.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonctions vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 1502–3; de Candolle's obscure reference to his writing on French forestry law is in an anonymous book review in Rev. Franç., 16 (1830), 1–22.Google Scholar
  66. 66.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonctions vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 1479–80.Google Scholar
  67. 67.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonction vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 1490–91.Google Scholar
  68. 68.
    N. T. de Saussure, Recherches chimiques sur la végétation (Paris, 1804); G. Carradoir, Sulla vitalita delle piante esperienze ed osservazione (Milan, 1807); G. Schubler and E. A. Zeller, “Untersuchungen über Einwirkung verschiedener Stoffe auf die Pflanzen,” Flora, 5 (1827), 753–768; J. Goppert, De acidi hydrocyanici vi in plantas commentatio (Bratislava, 1827); J. Macaire-Prinsep, “Note sur l'empoisonnement des végétaux par les substances vénéneuses qu'ils fournissent eux-mêmes,” Ann. Chim. Phys., 39 (1828), 95–97.Google Scholar
  69. 69.
    A. D. Thaer, Grundsaase der rationelle Landwirtschafte (Berlin, 1810); H. Davy, Elements of Agricultural Chemistry (London: Longman, Hurst, Rees, Orme and Brown, 1813).Google Scholar
  70. 70.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonction vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 41–42.Google Scholar
  71. 71.
    J. John, Über die Ernährung der Pflanzen in Allgemeinen und der Ursprung der Pottasche und anderes Salze in ihren insbesondere (Berlin: Rechter, 1819); C. Matteucci, “Sur l'influence de l'électricité sur la germination,” Ann. Chim. Phys., ser. 2, 55 (1832), 310–312; Murray, “On the Physiology of the Roots.”Google Scholar
  72. 72.
    J. Macaire-Prinsep, “Mémoire pour servir à l'histoire des assolemens,” Mém. Soc. Phys. Genève, 5 (1932), 282–290; Ann. Chim. Phys., ser. 2, 52 (1833), 225–240; trans. J. Rennie in Quart. J. Agric. (Edinb.), 4 (1834), 882–890. Although published for the first time in 1832, this report was read before the Société de Physique et d'Histoire Naturelle de Genève in 1831.Google Scholar
  73. 73.
    J. Macaire, “Expériences sur les excrétions des racines,” Ann. Sci. Nat., ser. 1, 28 (1833), 402–416.Google Scholar
  74. 74.
    J. von Sachs, History of Botany, 1530–1860 (London: Oxford, 1890), pp. 509–514.Google Scholar
  75. 75.
    J. Lindley, “On the Principal Questions at Present Debated in the Philosophy of Botany,” Rep. Brit. Ass. Adv. Sci., 3 (1833), 25–57; anonymous, “De Candolle's Theory of the Rotation of Crops,” Quart. J. Agric. (Edinb.), 4 (1834), 320–327; J. Rennie, “The Practice of Fallowing, of Paring and Burning, of Irrigation, and of Draining, Explained on New Scientific Principles,” Quart. J. Agric. (Edinb.), 5 (1834), 1–32; J. von Liebig, Organic Chemistry in Its Application to Agriculture and Physiology (London: Taylor and Walton, 1840); F. J. F. Meyen, Neues System der Pflanzen-Physiologie (Berlin: Haude und Spenersche Buchhandlung, 1837–39), II, 524–532; G. E. Fussell, Crop Nutrition: Science and Practice before Liebig (Lawrence, Kansas: Coronado Press, 1971); A. O. Craven, Soil Exhaustion as a Factor in the Agricultural History of Virginia and Maryland, 1606–1860 (Gloucester, Mass.: Peter Smith, 1965), p. 140.Google Scholar
  76. 76.
    Rennie, “The Practice of Fallowing.”Google Scholar
  77. 77.
    J. Main, “Remarks on a New Theory of Fallowing,” Quart. J. Agric. (Edinb.), 5 (1834), 241–249.Google Scholar
  78. 78.
    S. W., “Remarks on the Excretory Powers of Plants,” Quart. J. Agric. (Edinb.), 4 (1834), 880–882; “Excretion of Plants,” Quart. J. Agric. (Edinb.), 6 (1835), 133–138.Google Scholar
  79. 79.
    Anonymous, “Remarks on the Excretory Theory of Plants,” Quart. J. Agric. (Edinb.), 5 (1835), 586–590.Google Scholar
  80. 80.
    A. Gorrie, “Soil and Site for the Larch, Rot of the Larch, etc.,” Gardener's Mag., 7 (1833), 374; “On the Rot in Larch,” Quart. J. Agric. (Edinb.), 5 (1835), 537–545.Google Scholar
  81. 81.
    Neitner [sic], cited by J. F. W. Johnston, Lectures on Agricultural Chemistry and Geology, 2nd ed. (Edinburgh: William Blackwood, 1847). This is probably a reference to T. Nietner.Google Scholar
  82. 82.
    G. Towers, “On the Excretory Powers of Plants,” Quart. J. Agric. (Edinb.), 4 (1834), 656–667.Google Scholar
  83. 83.
    G. Towers, The Domestic Gardener's Manual, (London: Whittaker Treacher, 1830), pp. 397–398.Google Scholar
  84. 84.
    J. Marcet, Conversations on Vegetable Physiology: comprehending the Elements of Botany, with their Application to Agriculture (London: Longmans, 1829). Macaire was the French translator of Marcet's work.Google Scholar
  85. 85.
    A. Payen, “Essals relatifs à l'action du tannin et plusierus autres agens sur les racines des plantes”, Ann. Sci. Nat. (Bot.), 3 (1835), 5–20; “Mémoire sur la composition chimique des végétaux”, Mém. Acad. Roy. Sci. Inst. Fr., 8 (1843), 163–208.Google Scholar
  86. 86.
    A. Chatin, “Études de physiologie végétale faites au moyen de l'acide arsenieux”, Comp. Rend. Acad. Sci., 20 (1845), 21–29.Google Scholar
  87. 87.
    C. S. Sprengel, Die Lehre von Dünger oder Beschreibung aller bei der Landwirtschaft gebrauchlicher vegetabilischer, animalischer und mineralischer Düngermaterialen nebst Erklärung ihre Wirkungsart (Leipzig, 1839).Google Scholar
  88. 88.
    J. L. von Uslar, Die Bodenvergiftung durch die Wurzelnausscheidungen der Pflanzen als vorzüglichster Grund für die Pflanzen-Wechsel-Wirthschaft (Altona, 1844); Die Wurzeln der Pflanze oder die Bodenvergiftung durch die Wurzel-Ausscheidungen der Pflanzen als vorzüglichster Grund für die Pflanzen-Wechsel-Wirthschaft (Hamburg: Robert Kittler, 1852).Google Scholar
  89. 89.
    Anonymous, “Recommendations: Botany,” Rep. Brit. Ass. Adv. Sci., 2 (1833), 481–482; C. Daubeny, “On Excretions from the Roots of, Vegetables,” Rep. Brit. Ass. Adv. Sci., 3 (1834), 598.Google Scholar
  90. 90.
    L. C. Treviranus, Physiologie der Gewächse (Bonn, 1836), II, 108–120.Google Scholar
  91. 91.
    G. Backer, De radicum plantarum physiologia, earumque virtutibus medicio, plantarum physiologia illustrandis (Groningen: H. van Munster, 1829), p. 36; J. Kops and H. C. van Hall, Specimen botanicum, exhibens synopsin graminum indigenarum Belgii partis septentrionalis, olim VII proviniarum, una cum appendice, qua nonnullae indigenae novae indicantus (Rhenum: O. I. van Paddenburg, 1821).Google Scholar
  92. 92.
    E. Walser, Untersuchungen über die Wurzelausscheidungen (Tübingen: G. Bähr, 1838).Google Scholar
  93. 93.
    A. F. Wiegmann and L. Polstroff, Über die anorganischen Bestandtheile der Pflanzen (Brunswick: F. Viewig, 1842).Google Scholar
  94. 94.
    H. Braconnot, “Recherches sur l'influence des plantes sur le sol”, Ann. Chim. Phys., 72 (1839), 27–40.Google Scholar
  95. 95.
    G. Towers, “On the Excretion from the Roots of the Plants”, Quart. J. Agric. (Edinb.), 6 (1835), 360–368.Google Scholar
  96. 96.
    A. P. de Candolle, Pflanzen-Physiologie, trans. J. A. C. Röper (Stuttgart, 1833–34).Google Scholar
  97. 97.
    J. M. Schleiden, Principles of Botany; or Botany as an Inductive Science (London: Longman, Brown, Green and Longmans, 1849)Google Scholar
  98. 98.
    F. Unger, Über den Einfluss des Bodens auf die Vertheilung der Gewächse, nachgeweisen in der Vegetation des nordöstlichen Tirol's (Vienna: Rohrmann and Schweigard, 1836).Google Scholar
  99. 99.
    A. Gyde, “On the Radical Excretion of Plants,” Trans. Highland Agric. Soc. Scotland, 1845–1847, 273–292.Google Scholar
  100. 100.
    H. S. Reed, “Modern and Early Work upon the Question of Root Excretion”, Pop. Sci. Mon., 73 (1908), 257–266.Google Scholar
  101. 101.
    S. W. Johnson, How Crops Grow.: A Treatise on the Chemical Composition, Structure, and Life of the Plant for Agricultural Students (London, 1868).Google Scholar
  102. 102.
    D. Cauvet, “Études sur le rôle des racines dans l'absorption et excrétion”, Ann. Sci. Nat. ser. 4, 15 (1861), 320–359.Google Scholar
  103. 103.
    J. von Liebig, Organic Chemistry in Its Application to Agriculture and Physiology, 3rd ed. (London: Taylor and Walton, 1847); see also F. R. Moulton, Liebig and after Liebig: a Century of Progress in Agricultural Chemistry (Washington, D.C.: A.A.A.S., 1942).Google Scholar
  104. 104.
    C. Daubeny, “Memoir on the Rotation of Crops and on the Quantity of Inorganic Matter Abstracted from the Soil by Various Plants under Different Circumstances”, Phil. Trans. Roy. Soc. London 135B (1845), 179–252.Google Scholar
  105. 105.
    J. Coleman, “On the Cause of Fertility or Barrenness of Soils,” Agric. Soc. J., 16 (1855), 169–206.Google Scholar
  106. 106.
    N. Évon, “De l'alternance des végétaux,” Ann. Soc. Émul. Vosges (Épinal), 6 (1846), 115–141.Google Scholar
  107. 107.
    J. T. Way, “On the Fairy-Rings of Pastures, as Illustrating the Use of Inorganic Manures,” J. Roy. Agric Soc., 7 (1847), 549–552.Google Scholar
  108. 108.
    G. Gasparrini, Recherche sulla natura dei succiatori e la escrezione delle radici od osservazioni morfologiche sopra taluni organi della Lemna minor (Naples: G. Dura, 1857).Google Scholar
  109. 109.
    L. Garreau and Brauwers, “Recherches sur les formations cellulaires, l'accroissement et l'exfoliation des extrémités radiculaires et fibrillaires des plantes,” Ann. Sci. Nat., ser. 4, 10 (1858), 181–192.Google Scholar
  110. 110.
    S. P. Korel'schikov, Lugovye i soryne travy (1865); N. Levakovskii, Tr. obshch. estest. pri Kazan Univ. 1871, 33–52; 1873, 17–31: cited in Gortinskii, “Allelopathy and Experiments.”Google Scholar
  111. 111.
    J. S. Stickney and P. R. Hoy, “Discussion: Timber Growing,” Trans. Wis. State Hort. Soc., 11 (1881), 166–167. This is commonly cited as “Toxic Action of Black Walnut.”Google Scholar
  112. 112.
    Snowberger, Pacific Rural Press, 1 July 1871: cited in C. J. Soderquist, “Juglone and Allelopathy,” J. Chem. Educ., 50 (1973), 782–783.Google Scholar
  113. 113.
    G. Jaeger, Entdecklung der Seele: die Seele der Landwirtschaft (Leipzig: E. Gunther, 1885).Google Scholar
  114. 114.
    Reed, Short History; Clements, Aeration.Google Scholar
  115. 115.
    Duke of Bedford and S. Pickering, Science and Fruit Growing (London: Macmillan, 1919).Google Scholar
  116. 116.
    B. E. Livingston, J. C. Britton, and F. R. Reed, “Studies on the Properties of an Unproductive Soil,” U.S. Dept. Agr., Bur. Soils Bull., 28 (1905).Google Scholar
  117. 117.
    O. Schreiner and E. C. Shorey, “The Isolation of Harmful Organic Substances from Soils,” U.S. Dept. Agr., Bur. Soils Bull., 53 (1909).Google Scholar
  118. 118.
    E. F. Davis, “The Toxic Principle of Juglans nigra as Identified with Synthetic Juglone, and Its Toxic Effects on Tomato and Alfalfa Plants,” Amer. J. Bot., 15 (1928), 620; L. H. MacDaniels and D. L. Pinnow, “Walnut Toxicity, an Unsolved Problem,” Ann. Rep. No. Nutgrowers Ass., 67 (1976), 114–122.Google Scholar
  119. 119.
    Z. A. Patrick, “The Peach Replant Problem in Ontario. II. Toxic Substances from Microbiological Decomposition Products of Peach Root Residues”, Can. J. Bot., 33 (1955), 461–486.Google Scholar
  120. 120.
    H. Borner, “Liberation of Organic Substances from Higher Plants and Their Role in the Soil Sickness Problem,” Bot. Rev., 26 (1960), 393–424; G. B. Webster, S. U. Khan, and A. W. Moore, “Poor Growth of Alfalfa (Medicago sativa) on Some Alberta Soils,” Agron. J., 59 (1967), 37–41; J. M. Lynch, “Products of Soil Micro-Organisms in Relation to Plant Growth,” CRC Crit. Rev. Microbiol., 5 (1976), 67–107.Google Scholar
  121. 121.
    C. Keever, “Causes of Succession on Old Fields of the Piedmont, North Carolina,” Ecol. Monogr., 20 (1950); H. Kaben, “Die Rolle des Bodens bei allelopathischen Erscheinungen,” Naturwissenschaften, 18 (1963), 601.Google Scholar
  122. 122.
    G. M. Bendall, “The Allelopathic Activity of Californian Thistle (Cirsium arvense (L.) Scop.) in Tasmania,” Weed Res., 15 (1975), 77–82.Google Scholar
  123. 123.
    M. Vicherkova and F. Plhak, “Study of Autopathic and Allelopathic Properties of Cultivated Plants Using Sequence Culture Methods,” Biol. plant. (Prague), 8 (1966), 456–469.Google Scholar
  124. 124.
    D. T. Bell and C. H. Muller, “Dominance of California Annual Grasslands by Brassica nigra,” Amer. Midland Nat., 90 (1973), 277–299.Google Scholar
  125. 125.
    A. P. de Candolle, Physiologie végétale, ou exposition des forces et des fonctions vitales des végétaux, pour servir de suite à l'organographie végétale, et d'introduction à la botanique géographique et agricole (Paris: Bechet Jeune, 1832), pp. 1490–91.Google Scholar
  126. 126.
    S. Garb, “Differential Growth Inhibitors Produced by Plants,” Bot. Rev., 27 (1961), 422–443; C. H. Muller, “Allelopathy as a Factor in Ecological Process,” Vegetatio, 18 (1969), 348–357; S. T. Pickett and J. M. Baskin, “Allelopathy and Its Role in the Ecology of Higher Plants,” Biologist (Phi Sigma Soc.), 55 (1973), 49–73; Datta and Sinha-Roy, “Allelopathy and Inhibitors”; Rice, Allelopathy, p. 3.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • R. J. Willis
    • 1
  1. 1.Botany SchoolUniversity of MelbourneParkvilleAustralia

Personalised recommendations