Annals of Global Analysis and Geometry

, Volume 7, Issue 2, pp 93–106 | Cite as

On a new topology in the space of Fredholm operators

  • Anvar Irmatov


Group Theory Fredholm Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dixmier, J. and Douady, A., Champs continus d'espaces hilbertiens et de C*-algebres, Bull. Soc. Math. France 91 (1963), 227–284.Google Scholar
  2. [2]
    Dupré, M. J. and Fillmore, P. A., Triviality theorems for Hilbert modules, In: Topics in modern operator theory: 5th Intern. Conf. on Oper. Theory, Basel-Boston-Stuttgart, Birkhäuser Verlag, 1981, p. 71–79.Google Scholar
  3. [3]
    Frank, M., A set of maps fromK to EndA (l 2(A)) isomorphic to End A (K) (l 2(A (K))). Applications, Ann. Global Anal. Geom. 3 (1985), 155–171.Google Scholar
  4. [4]
    Kuiper, N. H., The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30.Google Scholar
  5. [5]
    Miščenko, A. S. and Fomenko, A. T., The index of elliptic operators over C*-algebras, Izv. Akad. Nauk 43 (1979), 831–859 (in Russian).Google Scholar

Copyright information

© VEB Deutscher Verlag der Wissenschaften 1989

Authors and Affiliations

  • Anvar Irmatov
    • 1
  1. 1.Department of Mechanics and Mathematics Section of Higher Geometry and TopologyMoscow State UniversityMoscowUSSR

Personalised recommendations