Biology and Philosophy

, Volume 11, Issue 1, pp 67–88 | Cite as

Evolutionary plasticity in prokaryotes: A panglossian view

Evolutionary plasticity in prokaryotes
  • Marcel Weber


Enzyme directed genetic mechanisms causing random DNA sequence alterations are ubiquitous in both eukaryotes and prokaryotes. A number of molecular geneticist have invoked adaptation through natural selection to account for this fact, however, alternative explanations have also flourished. The population geneticist G.C. Williams has dismissed the possibility of selection for mutator activity on a priori grounds. In this paper, I attempt a refutation of Williams' argument. In addition, I discuss some conceptual problems related to recent claims made by microbiologists on the adaptiveness of “molecular variety generators” in the evolution of prokaryotes. A distinction is proposed between selection for mutations caused by a mutator activity and selection for the mutator activity proper. The latter requires a concept of fitness different from the one commonly used in microbiology.

Key words

Microbial evolution genetic diversity genome plasticity mutation selection adaptation function etiological conception fitness environmental heterogeneity expected time to extinction clone individual clan subclan bacteriophage DNA inversion site-specific recombination secondary crossover sites transposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arber, W.: 1979, ‘Promotion and Limitation of Genetic Exchange (Nobel lecture)’, Science 205, 361–365.Google Scholar
  2. Arber, W.: 1990, ‘Mechanisms in Microbial Evolution’, Journal of Structural Biology 104, 107–111.Google Scholar
  3. Arber, W.: 1991, ‘Elements in Microbial Evolution’, Journal of Molecular Evolution 33, 4–12.Google Scholar
  4. Arber, W.: 1993, ‘Evolution of Prokaryotic Genomes’, Gene 135, 49–56.Google Scholar
  5. Beatty, J. and S. Finsen: 1989, ‘Rethinking the Propensity Interpretation: A Peek Inside Pandora's Box’, in M. Ruse (ed.), What the Philosophy of Biology is. Essays dedicated to David Hull, Kluwer, Dordrecht, pp. 17–30.Google Scholar
  6. Blot, M.: 1995, ‘Transposable Elements and Adaptation of Host Bacteria’, Genetica 93, 5–12.Google Scholar
  7. Brandon, R. and R.M. Burian, eds.: 1984, Genes, Organisms, Populations: Controversies over the Units of Selection, MIT Press, Cambridge Mass.Google Scholar
  8. Brandon, R.: 1992, ‘Environment’, in E. Fox Keller and E.A. Lloyd (eds.), Keywords in Evolutionary Biology, Harvard University Press, Cambridge Mass., pp. 81–86.Google Scholar
  9. Brock, T.D., D.W. Smith and M.T. Madigan: 1984, Biology of Microorganisms, Prentice-Hall, Englewood Cliffs.Google Scholar
  10. Cairns, J., J. Overbaugh and S. Miller: 1988, ‘The Origin of Mutants’, Nature 335, 142–145.Google Scholar
  11. Campbell, A.M., et al.: 1977, ‘Nomenclature ofTransposable Elements in Prokaryotes’, in A. I. Bukhari, J.A. Shapiro and S.L. Adhya (eds.), Insertion Elements, Plasmids and Episomes, CSHL, Cold Spring Harbor, pp. 15–22.Google Scholar
  12. Charlesworth, B., P. Sniegowski and W. Stephan: 1994, ‘The Evolutionary Dynamics of Repetitive DNA in Eukaryotes’, Nature 371, 215–220.Google Scholar
  13. Cooper, W.S.: 1984, ‘Expected Time to Extinction and the Concept of Fundamental Fitness’, Journal of Theoretical Biology 107, 603–629.Google Scholar
  14. Darlington, C.D.: 1958, The Evolution of Genetic Systems, Basic Books, New York.Google Scholar
  15. Dawkins, R.: 1982, The Extended Phenotype. The Gene as the Unit of Selection, Freeman, San Francisco.Google Scholar
  16. Dawkins, R.: 1989, The Selfish Gene. New Edition, Oxford University Press, Oxford.Google Scholar
  17. Doolittle, W.F. and C. Sapienza: 1980, ‘Selfish Genes, the Phenotype Paradigm and Genome Evolution’, Nature 284, 601–603.Google Scholar
  18. Ettinger, L., Jablonka, E. and nP. McLaughlin: 1990, ‘On the Adaptations of Organisms and the Fitness of Types’, Philosophy of Science 57, 499–513.Google Scholar
  19. Fisher, R.A.: 1930, The Genetical Theory of Natural Selection, Clarendon, Oxford.Google Scholar
  20. Goodenough, U.: 1984, Genetics, Saunders, Philadelphia.Google Scholar
  21. Gould, S.J. and R.C. Lewontin: 1979, ‘The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptionist Programme’, Proc. Roy. Soc. Lond. B 205, 581–98.Google Scholar
  22. Hamilton, W.D.: 1964, ‘The Genetical Evolution of Social Behaviour I’, Journal of Theoretical Biology 7, 1–16.Google Scholar
  23. Hodge, M.J.S.: 1987, ‘Natural Selection As a Causal, Empirical and Probabilistic Theory’, in L. Krüger, G. Gigerenzer and M.S. Morgan (eds.), The Probabilistic Revolution II. Ideas in the Sciences, MIT Press, Cambridge Mass., pp. 233–270.Google Scholar
  24. Hull, D.L.: 1981, ‘Units of Evolution: A Metaphysical Essay’, in U. L. Jensen and R. Harée (eds.), The Philosophy of Evolution, Harvester Press, Brighton, pp. 23–44.Google Scholar
  25. Hull, D.L.: 1992, ‘Individual’, in E. Fox Keller and E.A. Lloyd (eds.), Keywords in Evolutionary Biology, Harvard University Press, Cambridge Mass., pp. 180–187.Google Scholar
  26. Iida, S. and R. Hiestand-Nauer: 1986, ‘Localized Conversion at the Crossover Sequences in the Sie-Specific DNA Inversion Sequence of Bacteriophage P1’, Cell 45, 71–79.Google Scholar
  27. Iida, S. and R. Hiestand-Nauer: 1987, ‘Role of the Central Dinucleotide at the Crossover Sites or the Selection of Quasi Sites in DNA Inversion Mediated by the Site-Specific Cin Recombinase in Phage P1’, Molecular and General Genetics 208 464–468.Google Scholar
  28. Ives, P.T.: 1950, ‘The Importance of Mutation Rate Genes in Evolution’, Evolution 4, 236–252.Google Scholar
  29. Janzen, D.H.: 1977, ‘What are Dandelions and Aphids?’, American Naturalist 111, 586–589.Google Scholar
  30. Kimura, M.: 1960, ‘Optimum Mutation Rate and Degree of Dominance as Determined by the Principle of Minimum Genetic Load’, Journal of Genetics 57, 21–34.Google Scholar
  31. Lenski, R.E. and M. Travisano: 1994, ‘Dynamics of Adaptation and Diversification: A 10,000-Generation Experiment With Bacterial Populations’, Proc. Natl. Acad. Sci. USA 91, 6808–6814.Google Scholar
  32. Maynard Smith, J.: 1988, ‘The Evolution of Recombination’, in R.E. Michod and B.R. Levin (eds.), The Evolution of Sex, Sinauer, Sunderland, pp. 106–125.Google Scholar
  33. Maynard Smith, J.: 1989, Did Darwin Get it Right? Essays on Games, Sex and Evolution, Chapman & Hall, London.Google Scholar
  34. Mayr, E.: 1975, The Unity of the Genotype, Biologisches Zentralblatt 94, 377–388.Google Scholar
  35. Modi, R.I., et al: 1992, ‘Genetic Changes Accompanying Increased Fitness in Evolving Populations of Escherichia coli’, Genetics 130, 241–249.Google Scholar
  36. Murray, B.G.J.: 1990, ‘Population Dynamics, Genetic Change, and the Measurement of Fitness’, OIKOS 59, 189–199.Google Scholar
  37. Naas, T., M. Blot, W.M. Fitch and W. Arber: 1994, ‘Insertion Sequence-Related Genetic Variation in Resting Escherichia coli K-12’, Genetics 136, 721–730.Google Scholar
  38. Orgel, L.E. and F.H.C. Crick: 1980, ‘Selfish DNA: The Ultimate Parasite’, Nature 284, 604–607.Google Scholar
  39. Ridley, M.: 1993, The Red Queen. Sex and the Evolution of Human Nature, Macmillan, New York.Google Scholar
  40. Sarkar, S.: 1992, ‘Neo-Darwinism and the Problem of Directed Mutations’, Evolutionary Trends in Plants 6, 73–79.Google Scholar
  41. Sengstag, C. and W. Arber: 1983, ‘IS2 Insertion Is a Major Cause of Spontaneous Mutagenesis of the Bacteriophage P1: Non-random Distribution of Target Sites’, EMBO Journal 2, 67–71.Google Scholar
  42. Sober, E. and R. Lewontin: 1982, ‘Artifact, Cause and Genic Selection’, Philosophy of Science 49, 157–180.Google Scholar
  43. Sober, E.: 1993, Philosophy of Biology, Oxford University Press, Oxford.Google Scholar
  44. Stanley, S.M.: 1981, The New Evolutionary Timetable. Fossils, Genes and the Origin of Species, Basic Books, New York.Google Scholar
  45. Stearns, S.C.: 1992, The Evolution of Life Histories, Oxford University Press, Oxford.Google Scholar
  46. Wilke, C.M. and J. Adams: 1992,‘Fitness Effects of Ty Transposition in Saccharomyces cerevisiae’, Genetics 131, 31–42.Google Scholar
  47. Williams, G.C.: 1966, Adaptation and Natural Selection, Princeton University Press, Princeton.Google Scholar
  48. Williams, M.: 1970, ‘Deducing the Consequences of Evolution: A Mathematical Model’, Journal of Theoretical Biology 29, 383–385.Google Scholar
  49. Wilson, E.O.: 1975, Sociobiology: The New Sythesis, Harvard University Press, Cambridge Mass.Google Scholar
  50. Wright, L.: 1973, ‘Functions’, Philosophical Review 82, 139–168.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Marcel Weber
    • 1
    • 2
  1. 1.BiozentrumUniversity of BaselBaselSwitzerland
  2. 2.Fachgruppe PhilosophieUniversity of KonstanzKonstanzGermany

Personalised recommendations