Biotechnology Letters

, Volume 17, Issue 9, pp 985–988

The effects of phosphoric acid pretreatment on conversion of cellulose to ethanol at 45°C using the thermotolerant yeast Kluyveromyces marxianus IMB3

  • U. Nilsson
  • N. Barron
  • L. McHale
  • A. P. McHale
Article

Summary

Here we report on the effects of phosphoric acid pretreated cellulose as a substrate for ethanol production by K. marxianus IMB3 using simultaneous saccharification and fermentation systems at 45°C. With untreated, milled filter paper as substrate the maximum amount of ethanol produced was 25% of the maximum theoretical yield. After pre-treatment with 100% phosphoric acid, the yield increased to 42% of the maximum theoretical yield. When untreated microcrystalline cellulose was used as the fermentation substrate, yields of ethanol as 45°C amounted to 16% of the maximum theoretical yield whereas pretreatment of the substrate with phosphoric acid resulted in an increase in ethanol production to 69% of the maximum theoretical yield. This suggests that pretreatment of substrate with phosphoric acid would contribute to a reduction in the amount of exogenous enzyme needed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banat, I.M., Nigram, P., Marchant, R. (1992) World J. Microbiol. Biotechnol. 8, 259–263.Google Scholar
  2. Barron, N., Marchant, R., McHale, L. & McHale A.P. (1994) Biotechnol. Letts. 16, 625–630.Google Scholar
  3. Barron, N., Marchant, R., McHale, L. & McHale A.P. (1995) Appl. Microbiol. Biotechnol. (In press).Google Scholar
  4. Brady, D., Marchant, R., McHale, L. & McHale, A.P. (1994) Biotechnol. Letts. 16, 737–740.Google Scholar
  5. Fleming, M., Baron, N., McHale, L., Marchant, R. & McHale, A.P. (1993). Biotechnol. Letts., 15, 1195–1198.Google Scholar
  6. Johnson, R.D. & Eley, M.H. (1992) Appl. Biochem. Biotechnol. 34/35, 651–657.Google Scholar
  7. McHale, A.P. & Coughlan, M.P. (1980) FEBS Letts. 117, 319–322.Google Scholar
  8. McHale, A.P & Morrison, J. (1986) Enz. Microb. Technol. 8, 749–754.Google Scholar
  9. Philippidis, G.P., Smith, T.K. & Wyman, C.E. (1993) Biotech. Bioeng. 41, 846–853.Google Scholar
  10. Saito, N., Shimizu, R., Takai, M. & Hayoshi, J. (1994). Makuzai Gakkaishi. 4, 937–942.Google Scholar
  11. Saxena, A. Garg, S.K. & Verma, J. (1992) Bioresource Technol. 42, 13–15.Google Scholar
  12. Vallander, L. & Eriksson, E.L. (1990) Adv. Biochem. Eng. 42, 63–95.Google Scholar
  13. Winterburn, P.J. (1974) Companion to Biochemistry (Eds. Bull, A.T., Lagnado, J.R., Thomas,J.O. & Tipton, K.F.) Longman, London. 307–341.Google Scholar
  14. Wright, J.D., Wyman, C.E., Grohmann, K. (1988) Appl. Biochem. Biotechnol. 18, 75–90.Google Scholar
  15. Wyman, M., Chen, S. & Doan, K. (1993) Trans. IChemE. 71, 141–143.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • U. Nilsson
    • 1
    • 2
  • N. Barron
    • 1
  • L. McHale
    • 1
  • A. P. McHale
    • 1
  1. 1.Biotechnology Research GroupSchool of Applied Biological and Chemical Sciences, University of UlsterColeraineNorthern Ireland
  2. 2.Dept. of BiotechnologyUniversity of LundSweden

Personalised recommendations