Biotechnology Letters

, Volume 17, Issue 9, pp 893–898 | Cite as

Isolation of a highly enantioselective epoxide hydrolase from Rhodococcus sp. NCIMB 11216

  • Martin Mischitz
  • Kurt Faber
  • Andrew Willetts


Whole cells of Rhodococcus sp. NCIMB 11216 catalyze the asymmetric hydrolysis of racemic epoxides giving access to chiral epoxides and diols, which are important chiral building blocks for the synthesis of bioactive compounds. Employing a four-step purification procedure, the epoxide hydrolase responsible for the reaction was isolated and characterized to be a cofactor-independent, soluble monomeric protein of ~35kDa, exhibiting an isoelectric point of 4.7.


Hydrolysis Building Block Epoxide Diol Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen R.H. and Jacoby W.B., (1969) J. Biol. Chem. 244, 2078–2084.Google Scholar
  2. Berti G., (1986) in: Enzymes as Catalysts in Organic Synthesis. In: NATO ASI Ser., Schneider M.P., ed. vol. 178. pp 349–354, Dordrecht: Reidel.Google Scholar
  3. Bradford M.M., (1976) Anal. Biochem. 72, 248–254.Google Scholar
  4. De Bont J.A.M., (1993) Tetrahedron: Asymmetry 4, 1331–1340.Google Scholar
  5. Furuhashi K., (1992) Biological Routes to Optically Active Epoxides. In: Chirality in Industry, Collins A. N., Sheldrake G. N. and Crosby J., eds., pp 167–186, Chichester: Wiley.Google Scholar
  6. Hechtberger P., Wirnsberger G., Mischitz M., Klempier N. and Faber K., (1993) Tetrahedron: Asymmetry 4, 1161–1164.Google Scholar
  7. Jacobs M.H.J., Van den Wijngaard A.J., Patenga M. and Janssen D.B., (1991) Eur. J. Biochem. 202, 1217–1222.Google Scholar
  8. Jacobsen E. N., Zhang W., Muci A.R., Ecker J.R. and Deng L., (1991) J. Am. Chem. Soc., 113, 7063–7064.Google Scholar
  9. Konishi K., Oda K., Nishida K., Aida T. and Inoue S., (1992) J. Am. Chem. Soc., 114, 1313–1317.Google Scholar
  10. Leak D.J., Aikens P.J. and Seyed-Mahmoudian M., (1992) Trends Biotechnol. 10, 256–261.Google Scholar
  11. Michaels B.C., Ruettinger R.T. and Fulco A.J., (1980) Biochem. Biophys. Res. Commun. 92, 1189–1195.Google Scholar
  12. Mischitz M., Kroutil W., Wandel U. and Faber K., (1995), Tetrahedron: Asymmetry 6, 1261–1272.Google Scholar
  13. Nakamura T., Nagasawa T., Yu F.,Watanabe I. and Yamada H., (1992) J. Bacteriol. 174, 7613–7619.Google Scholar
  14. Nakamura T., Nagasawa T., Yu F., Watanabe I. and Yamada H., (1994) Appl. Environ. Microbiol. 60, 4630–4633.Google Scholar
  15. Pedragosa-Moreau S., Archelas A. and Furstoss R., (1993) J.Org.Chem. 58, 5533–5536.Google Scholar
  16. Wandel U., Mischitz M., Kroutil W. and Faber K. (1995), J. Chem. Soc., Perkin Trans. 1, 735–736.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Martin Mischitz
    • 1
  • Kurt Faber
    • 1
  • Andrew Willetts
    • 2
  1. 1.Institute of Organic Chemistry, Graz University of TechnologyGrazAustria
  2. 2.Department of Biological SciencesExeter UniversityExeterUK

Personalised recommendations