International Journal of Computer Vision

, Volume 8, Issue 2, pp 153–165 | Cite as

Computation of discontinuous optical flow by domain decomposition and shape optimization

  • C. Schnörr


A well-known method for the reconstruction of motion fields from noisy image data is to determine flow fields by the minimization of a quadratic functional. The first approach of this class has been proposed by Horn and Schunck (1981). A drawback of such approaches is that an explicit representation of the discontinuities of the motion field is lacking and that, in general, the resulting flow fields approximate the motion fields only badly at the corresponding locations in the image plane. In this article, we discuss the possibility to improve the results by hypothesizing the qualitative structure of the motion field in terms of certain parameters. We decompose the image plane into disjoint sets, restrict the domain of definition of the functionals to these sets, and use the hypotheses to deform and to move the boundaries of the sets within the image plane. We discuss the range of applicability of this new technique and illustrate the algorithm by numerical examples. This article is a revised and extended version of Schnörr (1990).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blake, A. and Zisserman, A., 1987. Visual Reconstruction. MIT Press, Cambridge, MA.Google Scholar
  2. Geman, S., and Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Patt. Anal. Mach. Intell. 6(6): 721–741.Google Scholar
  3. Haug, E., and Cea, J., (eds.), 1981. Optimization of distributed parameter structures—Vol. 2. Sijthoff+Noordhoff, Alphen aan den Rijn: The Netherlands and Rockville, Maryland, USA.Google Scholar
  4. Horn, B.K.P., and Schunck, B.G., 1981. Determining optical flow. Artificial Intelligence 17: 185–203.Google Scholar
  5. Hutchinson, J., Koch, C., Luo, J., and Mead, C., 1988. Computing motion using analog and binary resistive networks, IEEE Computer 21: 52–63.Google Scholar
  6. Lions, J.-L., 1971. Optimal control of systems governed by partial differential equations. Springer-Verlag: Berlin, Heidelberg, New York.Google Scholar
  7. Murat, F., and Simon, J., 1976. Etude de problemes d'optimal design. Optimization Techniques. Proc. 7th IFIP Conf. Nice, Sept. 8–12, 1975, in J.Cea (ed.), Lect. Notes Comput. Sci. 41, Springer-Verlag: Berlin, Heidelberg, New York.Google Scholar
  8. Murray, D.W., and Buxton, B.F., 1987. Scene segmentation from visual motion using global optimization, IEEE Trans. Patt. Anal. Mach. Intell. 9(2): 220–228.Google Scholar
  9. Nagel, H.-H., 1987. On the estimation of optical flow: relations between different approaches and some new results. Artificial Intelligence 33: 299–324.Google Scholar
  10. Nagel, H.-H., 1989. On a constraint equation for the estimation of displacement rates in image sequences. IEEE Trans. Patt. Anal. Mach. Intell. 11 (1): 13–30.Google Scholar
  11. Pironneau, O., 1983 Optimal shape design for elliptic systems. Springer-Verlag: New York, Berlin, Heidelberg, Tokyo.Google Scholar
  12. Schnörr, C., 1990. Computation of discontinuous optical flow by domain decomposition and shape optimization, Brit. Mach. Vis. Conf., Oxford/UK, 24.-27.09.1990, pp. 109–114.Google Scholar
  13. Schnörr, C., 1991a. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Intern. J. Comput. Vis. 6(1): 25–38.Google Scholar
  14. Schnörr, C., 1991b. Funktionalanalytische Methoden zur Gewinnung von Bewegungsinformation aus TV-Bildfolgen. Dissertation, Universität Karlsruhe (TH), Fakultät für Informatik.Google Scholar
  15. Simon, J., 1980. Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optimiz. 2(7&8):649–687.Google Scholar
  16. Terzopoulos, D., 1988. The computation of visible-surface representations. IEEE Trans. Patt. Anal. Mach. Intell. 10(4):417–438.Google Scholar
  17. Verri, A., and Poggio, T., 1987. Against quantitative optical flow Proc. 1st Intern. Conf. Comput. Vis. June 8–11, London, pp. 171–180.Google Scholar
  18. Yuille, A.L., Geiger, D., and Bülthoff, H., 1990. Stereo integration, mean field theory and psychophysics. 1st Europ. Conf. Comput. Vis., Antibes, France, April 23–27, O. Faugeras (ed.), Lect. Notes Comput. Sci. 427, Springer-Verlag, pp. 73–82.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • C. Schnörr
    • 1
  1. 1.AB Kognitive SystemeUniversität Hamburg, FB InformatikHamburg 50Germany

Personalised recommendations