, Volume 72, Issue 1, pp 3–12 | Cite as

Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces) karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species

  • V. J. Birstein
  • V. P. Vasiliev


The karyotypes of four Acipenseriformes species, Acipenser gueldenstaedti, 2n=250±8, A. ruthenus, A. stellatus and Huso huso, 2n=118±2, are described. In all four karyotypes the majority of chromosomes are meta- and submetacentric macrochromosomes, and microchromosomes of different morphology make up about one third of the set. In A. ruthenus the NORs are located in the telomeric region of a pair of microchromosomes and at least in one pair of middle-size acrocentrics, and in A. stellatus and Huso huso also in the telomeric regions of at least one pair of microchromosomes. The modal number of active nucleoli in A. gueldenstaedti nuclei amounts to 6–8 (range 2–12), in A. ruthenus, A. stellatus and H. huso nuclei to 2–3 (range 1–6). The data obtained point to the tetraploid origin of Acipenseriformes species with 120 chromosomes and to the octoploid origin of species with 240–260 chromosomes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F. W. & Thorgaard, G. H., 1984. Tetraploidy and the evolution of salmonid fishes. In: Evolutionary genetics of fishes. New York & London, Plenum Press, pp. 1–54.Google Scholar
  2. Allendorf, F. W., Utter, F. M. & May, B. P., 1975. Gene duplication within the family Salmonidae: detection and determination of the genetic control of duplicate loci through inheritance studies and examination of populations. Isozymes IV: 415–432.Google Scholar
  3. Almeida Toledo, L. T., Foresti, F. & Almeida Toledo, S., 1981. Constitutive heterochromatin and nucleolus region in the knifefish, Apteronotus albifrons (Pisces, Apteronotidae). Experientia 37: 953–954.Google Scholar
  4. Arai, R. A., 1982. A chromosome study on two cyprinid fishes, Acrossochelus labiatus and Pseudorasbora pumila pumila, with notes on Eurasian cyprinids and their karyotypes. Bull. Nat. Sci. Mus., Ser. A 8: 129–152.Google Scholar
  5. Arefiev, V. A., 1983. Polykaryogramic analysis of ship sturgeon Acipenser nudiventris Lovetzky (Acipenseridae). Vopr. Ichthiol. (Russ.) 23: 209–218.Google Scholar
  6. Berg, L. S., 1955. System of fishes, contemporary and fossil. Tr. Zool. Inst. Acad. Sci. USSR, Moscow-Leningrad 20: 1–286 (In Russian).Google Scholar
  7. Birstein, V. J., 1981. Silver staining of Drosophila polytene chromosomes and the effect of hyaluronidase and lysozyme pretreatment. Genetica 56: 167–173.Google Scholar
  8. Carlson, D. M., Kettler, M. K., Fisher, S. E. & Whitt, G. S., 1982. Low genetic variability in paddlefish populations. Copeia 3: 721–725.Google Scholar
  9. Dingercus, G., 1979. Chordate cytogenetic studies: an analysis of their phylogenetic implications with particular reference to fishes and the living coelacanth. Occas. Pap. Calif. Acad. Sci., No 134: 111–127.Google Scholar
  10. Dingercus, G. & Howell, W. M., 1976. Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842–843.Google Scholar
  11. Fontana, F., 1976. Nuclear DNA content and cytometry of erythrocytes of Huso huso L., Acipenser sturio L., and Acipenser naccaril Bonaparte. Caryologia 29: 127–138.Google Scholar
  12. Fontana, F. & Colombo, G., 1974. The chromosome of Italian sturgeons, Experientia 30: 1021.Google Scholar
  13. Fontana, F., Jankovié, D. & Zivkovié, S., 1977. Somatic chromosomes of Acipenser ruthenus L. Arch. biol. nauka 27: 33–35.Google Scholar
  14. Foresti, F., Almeida Toledo, L. F. & Toledo, S., 1981. Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet. Cell Genet. 31: 137–144.Google Scholar
  15. Foresti, F., Almeida Toledo, L. F. & Pathak, S., 1983. Silverstaining NOR and synaptonemal complex analysis during male meiosis of Tilapia rendalli. J. Hered. 74: 127–128.Google Scholar
  16. Galetti, P. M., Bardos da Silva, E. & Cerminaro, R. T., 1985. A multiple NOR system in the fish Serrasalmus spilopleura (Serrasalminae, Characidae). Rev. brasil. Genet. 8: 479–484.Google Scholar
  17. Galetti, P. M., Foresti, F., Bertolio, L. A. C. & Moreira, O. F., 1984. Characterization of eight species of Anostomidae (Cypriniformes) fish on the basis of the nucleolar organizing regions. Caryologia 37: 401–406.Google Scholar
  18. Gold, J. R. & Ellinson, J. R., 1983. Silver staining for nucleolar organizing regions of vertebrate chromosomes. Stain Technol. 58: 51–55.Google Scholar
  19. Goodpasture, C. & Bloom, S. E., 1975. Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53: 37–50.Google Scholar
  20. Howell, W. M. & Black, D. A., 1979. Location of the nucleolus organizer regions on the sex chromosomes of the banded killifish, Fundulus diaphanus. Copeia 3: 544–546.Google Scholar
  21. Kedrova, O. S., Wladytchenskaya, N. S. & Antonov, A. S., 1980. Single copy and repeated sequence divergency in the fish genomes. Mol. Biol. (Russ.) 14: 1001–1012.Google Scholar
  22. Kligerman, A. D. & Bloom, S. E., 1977. Distribution of F-bodies, heterochromatin, and nucleolar organizer in the genome of the central minnow, Umbra limi. Cytogenet, Cell Genet. 18: 182–196.Google Scholar
  23. Kornfield, I. L., Ritte, U., Richler, C. & Wahrman, J., 1979. Biochemical and cytological differentiation among Cichlid fishes of the Sea of Galilee. Evolution 33, No 1, pt. 1: 1–14.Google Scholar
  24. Leipoldt, M., 1983. Towards an understanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploid lower vertebrates. Hum. Genet. 65: 11–18.Google Scholar
  25. Leipoldt, M. & Schmidtke, J., 1982. Gene expression in phylogenetically polyploid organisms. In: G.Dover & R.Flavell (eds), Genome evolution. Acad. Press, London-New York, pp. 219–236.Google Scholar
  26. Mayr, B., Rab, P. & Kalat, M., 1985. Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae). Genetica 67: 51–56.Google Scholar
  27. Mayr, B., Rab, P. & Kalat, M., 1986. NORs and counterstain-enhanced fluorescence studies in Cyprinidae of different ploidy level. Genetica 69: 111–118.Google Scholar
  28. Moreira-Filho, O., Bertollo, L. A. C. & Galetti, P. M., 1984. Structure and variability of nucleolar organizer regions in Parodontidae fishes. Can. J. Genet. Cytol. 26: 564–568.Google Scholar
  29. Nardi, I., DeLucchini, S., Barsacchi-Pilone, G. & Andronico, F., 1978. Chromosome location of the ribosomal RNA genes in Triturus vulgaris meridionalis (Amphibia, Urodela). IV. Comparison between in situ hybridization with 3H 18S+28S rRNA and AS-SAT staining. Chromosoma 70: 91–99.Google Scholar
  30. Nevo, E., 1978. Genetic variation in natural populations: pattern and theory. Theor. Popul. Biol. 13: 121–177.Google Scholar
  31. Ohno, S., Muramoto, J., Christian, L. & Atkin, N., 1967. Diploid-tetraploid relationship among Old-World members of the fish family Cyprinidae. Chromosoma 23: 1–9.Google Scholar
  32. Ohno, S., Muramoto, J., Klein, J. & Atkin, N., 1969a. Diploidtetraploid relationship in clupeoid and salmonold fishes. Chromosomes Today 2: 139–147.Google Scholar
  33. Ohno, S., Muramoto, J., Stenius, C., Christian, L. & Kittrell, W. A., 1969b. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35–40.Google Scholar
  34. Ojima, Y. & Yamano, T., 1980a. The assignment of the nucleolar organizer in the chromosomes of the tuna (Carassius, Cyprinidae, Pisces). Proc. Japan Acad. 56B: 551–556.Google Scholar
  35. Ojima, Y. & Yamano, T., 1980b. A chromosome study of the holostean long nose gar Lepisosteus osseus. Chrom. Inform. Serv. 28: 7–8.Google Scholar
  36. Pedersen, R. A., 1971. DNA content, ribosomal gene multiplicity, and cell size in fish. J. exp. Zool. 177: 65–78.Google Scholar
  37. Phelps, S. R. & Allendorf, F. W., 1983. Genetic identity of pallid and shovelnose sturgeon (Seaphirhynchus albus and S. platorynchus). Copeia 3: 696–700.Google Scholar
  38. Phillips, R. B., 1983. Chromosomal location of nucleolar organizer regions (NORs) in Salmonids. Geneties. 104, No 1, pt. 2: s56-s57.Google Scholar
  39. Ruiz, I. R. G., Soma, M. & Becak, W., 1981. Nucleolar organizer regions and constitutive heterochromatin in polyploid species of the genus Odontophrynus (Amphibia, Anura). Cytogenet. Cell Genet. 29: 84–98.Google Scholar
  40. Schmid, M., Lösser, C., Schmidtke, J. & Engel, W., 1982. Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86: 149–179.Google Scholar
  41. Schubert, I., 1984. Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae S. lat)?—Inferences from the specifity of silver staining. Pl. Syst. Evol. 144: 291–305.Google Scholar
  42. Simon, R. C., 1963. Chromosome morphology and species evolution in the five North American species of pacific salmon (Oncorhynchus). J. Morphol. 112: 77–97.Google Scholar
  43. Sola, L., Camerini, B. & Cataudella, S., 1984. Cytogenetics of Atlantic eels: C- and G-banding, nucleolus organizer regions, and DNA content. Cytogenet. Cell Genet. 38: 206–211.Google Scholar
  44. Takai, A. & Ojima, Y., 1984. Some features on the nucleolus organizer regions in the chromosomes of the cyprinid fishes. Proc. Japan Acad. 60B: 410–413.Google Scholar
  45. Thode, G., Alvarez, M. C., Giles, V. & Garcia, E., 1985. Chromosome complement, C-banding and Ag-NOR location in Ophisurus serpens (Ophichthyidae, Anguilliformes). Cytobios 43: 73–77.Google Scholar
  46. Thode, G., Cano, J. & Alvarez, C. M., 1983. A karyological study of four species of Mediterranean Gobiid fishes. Cytologia 48: 131–138.Google Scholar
  47. Toivonen, L. A., Crowe, D. T., Detrick, R. J., Klemann, S. W. & Vaughn, J. C., 1983. Ribosomal RNA gene number and sequence divergence in the diploid-tetraploid species pair of North American hylid tree frogs. Biochem. Genet. 21: 299–308.Google Scholar
  48. Uwa, H., Iwamatsu, T. & Ojima, Y., 1981. Karyotype and banding analysis of Oryzias celebensis (Oryziatidae, Pisces) in cultured cells. Proc. Japan Acad. 57B: 95–99.Google Scholar
  49. Uwa, H., Iwamatsu, T. & Saxena, O. P., 1983. Karyotype and cellular DNA content of the Indian ricefish, Oryzias melastigma. Proc. Japan Acad. 59B: 43–47.Google Scholar
  50. Uwa, H. & Iwata, A., 1981. Karyotype and cellular DNA content of Oryzias javanicus (Oryziatidae, Pisces). Chrom. Inform. Serv. 31: 24–26.Google Scholar
  51. Uwa, H. & Ojima, Y., 1981. Detailed and banding karyotype analysis of the medaka, Oryzias latipes in cultured cells. Proc. Japan Acad. 57B: 39–43.Google Scholar
  52. Uwa, H., Tanaka, K. & Formacion, M. J., 1982. Karyotype and banding analysis of the Hainan medaka, Oryzias curvinotus (Pisces). Chrom. Inform. Serv. 33: 15–17.Google Scholar
  53. Vasiliev, V. P., 1977. On the polyploidy in fishes and some questions of karyotype evolution of salmonids. Zhurn. Obsch. Biol. (Russ.) 38: 380–392.Google Scholar
  54. Vasiliev, V. P., 1980. Chromosome numbers of fishes. Vopr. Ichthyol. (Russ.) 20: 387–422.Google Scholar
  55. Vasiliev, V. P., 1985. Evolutionary karyology of fishes. Moscow, Nauka (In Russian).Google Scholar
  56. Vasiliev, V. P. & Sokolov, L. I., 1980. The method for Chondrostean karyotypes studies. Ichthyol. (Russ.). 22: 1106–1109.Google Scholar
  57. Vasiliev, V. P., Sokolov, L. I. & Serebryakova, E. V., 1980. The karyotype of the Siberian sturgeon Acipenser baeri Brandt from Lena river and some problems of karyotype evolution of Acipenseriformes. Vopr. Ichthyol. (Russ.) 20: 814–822.Google Scholar
  58. Vuorinen, J., 1984. Electrophoretic expression of genetic variation and duplicate gene activity in vendare, Coregonus albula (Salmonidae). Hereditas 101: 85–96.Google Scholar
  59. Wang, R., Shi, L. & He, W., 1985. NORs investigation in some Cyprinus species by Ag-staining. Zool. Res. 6: 391–398.Google Scholar
  60. Wiberg, U. H., 1983. Sex determination in the European eel (Anguilla anguilla L.). Cytogenet. Cell Genet. 36: 589–598.Google Scholar
  61. Woods, T. D. & Buth, D. G., 1984. High level of gene silencing in the tetraploid goldfish. Biochem. Syst. Evol. 12: 415–421.Google Scholar

Copyright information

© Dr W. Junk Publishers 1987

Authors and Affiliations

  • V. J. Birstein
    • 1
    • 2
  • V. P. Vasiliev
    • 1
    • 2
  1. 1.N.K. Koltsov Institute of Developmental BiologyMoscowUSSR
  2. 2.A.N. Severtsov Institute of Evolutionary Animal Morphology and EcologyMoscowUSSR

Personalised recommendations