Advertisement

Journal of Low Temperature Physics

, Volume 88, Issue 5–6, pp 433–482 | Cite as

Spin diffusion in dilute, polarized 3He-4He solutions

  • William J. Mullin
  • Jong W. Jeon
Article

Spin dynamics for arbitrarily polarized and very dilute solutions of 3He in liquid 4He are described. We began at a very fundamental level by deriving a kinetic equation for arbitrarily polarized dilute quantum systems based on a method due to Boercker and Dufty. This approach allows more controlled approximations than our previous derivation based on the Kadanoff-Baym technique. Our previous work is here generalized to include T-matrix interactions rather than the Born approximation. Spin hydrodynamic equations are derived. The general equations are valid for both Fermi and Bose systems. By use of a well-known phenomenological potential to describe the 3He-3He T-matrix we calculate longitudinal and transverse spin diffusion coefficients D and D¦ and the identical-particle spin-rotation parameter Μ. We confirm that these two diffusion constants differ at low T with D approaching a constant as T → 0, and D¦~1/T2. Estimates of errors made by our approximations are considered in detail. Good agreement is found in comparison with data from both Cornell University and the University of Massachusetts. We find that the s-wave approximation is inadequate and that mean-field corrections are important. Comparison is also made between theory and the recent UMass viscosity measurements.

Keywords

Quantum System Diffusion Constant Viscosity Measurement Hydrodynamic Equation Born Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Jeon and W. J. Mullin, J. Phys. France 49, 1691 (1988).Google Scholar
  2. 2.
    J. W. Jeon and W. J. Mullin, Phys. Rev. Lett. 62, 2691 (1989).Google Scholar
  3. 3.
    C. Lhuillier and F. Laloë, J. Phys. France 43, 197 (1982); 43, 225 (1982).Google Scholar
  4. 4.
    A. E. Meyerovich, in Helium Three, W. P. Halperin and L. P. Pitaevskii ed. (North-Holland, Amsterdam, 1990), Chap. 13; A. E. Meyerovich, in Progress in Low Temperature Physics, D. F. Brewer, ed. (North-Holland, Amsterdam, 1987), Vol. XI; E. P. Bashkin and A. E. Meyerovich, Sov. Phys. JETP 47, 992 (1978); E. P. Bashkin, Sov. Phys.-JETP Lett. 33, 8 (1981); L. P. Levy and A. E. Ruckenstein, Phys. Rev. Lett. 52, 1412 (1984).Google Scholar
  5. 5.
    A. J. Leggett and M. J. Rice, Phys. Rev. 21, 506 (1968); A. J. Leggett, J. Phys. C 12, 448 (1970).Google Scholar
  6. 6.
    J. W. Jeon and H. R. Glyde, Phys. Rev. B 43, 5338 (1991).Google Scholar
  7. 7.
    A. E. Meyerovich, Phys. Lett. 107A, 177 (1985).Google Scholar
  8. 8.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).Google Scholar
  9. 9.
    D. B. Boercker and J. W. Dufty, Ann. of Phys. 119, 43 (1979).Google Scholar
  10. 10.
    D. Candela, D. R. McAllaster, and L.-J. Wei, Phys. Rev. B 44, 7510 (1991); D. Candela, D. R. McAllaster, L.-J. Wei, and G. A. Vermeulen, Phys. Rev. Lett. 65, 595 (1990).Google Scholar
  11. 11.
    G. Nunes, Jr., C. Jin, A. M. Putnam, and D. M. Lee, Phys. Rev. Lett. 65, 2149 (1990).Google Scholar
  12. 12.
    J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).Google Scholar
  13. 13.
    C. Ebner, Phys. Rev. 156, 222 (1967).Google Scholar
  14. 14.
    V. P. Silin, Sov. Phys. JETP 6, 945 (1958).Google Scholar
  15. 15.
    For example, G. Baym and C. Pethick, in Physics of Liquid and Solid Helium, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), Vol. 2, Chap. 2.Google Scholar
  16. 16.
    V. P. Silin, Vvedenie v Kineticheskuyu Teoriyu Gasov (Nanka, Moscow, 1971), Chap. 8.Google Scholar
  17. 17.
    J. W. Jeon and W. J. Mullin, Physica B 169, 543 (1991).Google Scholar
  18. 18.
    K. Imre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, Jour. Math. Phys. 8, 1097 (1967).Google Scholar
  19. 19.
    E. P. Bashkin, Phys. Rev. Lett. 55, 1426 (1985); A. E. Ruckenstein and L. P. Lévy, Phys. Rev. Lett. 55, 1427 (1985); F. Laloë (unpublished); A. E. Ruckenstein and L. P. Lévy, Phys. Rev. B 39, 183 (1989).Google Scholar
  20. 20.
    R. F. Snider, J. Chem. Phys. 32, 1051 (1960).Google Scholar
  21. 21.
    R. F. Snider, J. Stat. Phys. 61, 443 (1990).Google Scholar
  22. 22.
    F. Laloë and W. J. Mullin, J. Stat. Phys. 58, 725 (1990).Google Scholar
  23. 23.
    F. Laloë, J. Phys. France 50, 1851 (1989); G. Tastevin, P. J. Nacher, and F. Laloë, J. Phys. France 50, 1879 (1989); P. J. Nacher, G. Tastevin, and F. Laloë, J. Phys. France 50, 1907 (1989); P. J. Nacher, G. Tastevin, and F. Laloë, Ann. der Physik 50, 1907 (1989); P. J. Nacher, G. Tastevin, and F. Laloë, J. de Physique I, 1, 181 (1991).Google Scholar
  24. 24.
    E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).Google Scholar
  25. 25.
    J. C. Rainwater and R. F. Snider, Phys. Rev. A 13, 1190 (1976).Google Scholar
  26. 26.
    K. Miyake, W. J. Mullin, and P. C. E. Stamp, J. Phys. France 46, 663 (1985).Google Scholar
  27. 27.
    S. Grossman, Z. Phys. 180, 286 (1964); 182, 24 (1976). See also K. Baerwinkel and S. Grossman, Z. Phys. 198, 277 (1967); K. Baerwinkel, Z. Naturforsch. 249, 22, 38 (1969).Google Scholar
  28. 28.
    M. B. Vetrovec and G. M. Carnerio, Phys. Rev. B 22, 1259 (1980).Google Scholar
  29. 29.
    For example, J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1989).Google Scholar
  30. 30.
    J. W. Jeon and W. J. Mullin, J. Low Temp. Phys. 67, 421 (1987).Google Scholar
  31. 31.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981), Sec. 18.Google Scholar
  32. 32.
    A. E. Meyerovich, Phys. Rev. B 39, 9318 (1989).Google Scholar
  33. 33.
    C. Lhuillier, J. Phys. France 44, 1 (1983).Google Scholar
  34. 34.
    B. Brami, F. Joly, and C. Lhuillier, Physica A 164, 353 (1990).Google Scholar
  35. 35.
    W. J. Mullin and K. Miyake, J. Low Temp. Phys. 53, 313 (1983).Google Scholar
  36. 36.
    H. H. Fu and C. J. Pethick, Phys. Rev. B 14, 3837 (1976).Google Scholar
  37. 37.
    C. J. Pethick and G. M. Carneiro, Phys. Rev. A 7, 304 (1973).Google Scholar
  38. 38.
    J. R. Owers-Bradley, R. M. Bowley, and P. C. Main, J. Low Temp. Phys. 60, 243 (1985).Google Scholar
  39. 39.
    D. Candela, L.-J., Wei, D. R. McAllaster, and W. J. Mullin, Phys. Rev. Lett. 67, 330 (1991).Google Scholar
  40. 40.
    T. M. M. Hampson, R. M. Bowley, D. Brugel, and G. McHale, J. Low Temp. Phys. 73, 333 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • William J. Mullin
    • 1
  • Jong W. Jeon
    • 2
  1. 1.Department of PhysicsUniversity of MassachusettsAmherst
  2. 2.Department of PhysicsTaegu UniversityKyungbukSouth Korea

Personalised recommendations