Journal of Muscle Research & Cell Motility

, Volume 16, Issue 5, pp 491–498 | Cite as

Essential light chain of Drosophila nonmuscle myosin II

  • Kevin A. Edwards
  • Xiao-Jia Chang
  • Daniel P. Kiehart


We have cloned and sequenced a cDNA encoding the essential (alkaline) light chain of nonmuscle myosin from Drosophila melanogaster. The protein predicted from the cDNA matches partial amino acid sequence derived from essential light chain protein that copurifies with native nonmuscle myosin heavy chain. This completes the sequence of the three myosin subunits, two of which have been shown genetically to be required for morphogenesis and cytokinesis (the heavy chain encoded by zipper and the regulatory light chain encoded by spaghetti squash). The essential light chain protein is 147 amino acids in length and is 53% identical to human smooth muscle essential light chain. The sequence is consistent with the presence of four helix-loop-helix domains seen in crystallographic structures of the striated muscle myosin light chains and their close relative, calmodulin. We identified the most conserved residues among essential light chain sequences from multiple phyla and present their locations on the crystallographic structure of striated muscle essential light chain. This highlights several conserved contacts among the myosin subunits that may be important for the structure and regulation of the myosin motor. The gene encoding Drosophila nonmuscle essential light chain (Mlc-c) localizes to cytological position 5A6 and we discuss prospects for genetic analysis in this region.


Striate Muscle Light Chain Heavy Chain Myosin Heavy Chain Myosin Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AEBERSOLD, R. H., LEAVITT, J., SAAVEDRA, R. A., HOOD, L. E. & KENT, S. B. H. (1987) Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc. Natl. Acad. Sci. USA 84, 6970–4.Google Scholar
  2. ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–10.Google Scholar
  3. BALLINGER, D. G. & BENZER, S. (1989) Targeted gene mutations in Drosophila. Proc. Natl. Acad Sci. USA 86, 9402–6.Google Scholar
  4. BROWN, N. H. & KAFATOS, F. C. (1988) Functional cDNA libraries from Drosophila embryos. J. Mol. Biol. 203, 425–37.Google Scholar
  5. CAVENER, D. R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353–61.Google Scholar
  6. CHENEY, R. E., RILEY, M. A. & MOOSEKER, M. S. (1993) Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskeleton 24, 215–33.Google Scholar
  7. ENGELS, W. R., PRESTON, C. R., THOMPSON, P. & EGGLESTON, W. B. (1986) In situ hybridization to Drosophila salivary chromosomes with biotinylated DNA probes and alkaline phosphatase. Focus 8, 6–8.Google Scholar
  8. ESPREAFICO, E. M., CHENEY, R. E., MATTEOLI, M., NASCIMENTO, A. A., DeCamilli, P. V., LARSON, R. E. & MOOSEKER, M. S. (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol. 119, 1541–57.Google Scholar
  9. FATH, K. R. & BURGESS, D. R. (1994) Membrane motility mediated by unconventional myosin. Curr. Opin. Cell Biol. 6, 131–5.Google Scholar
  10. GOODSON, H. V. & SPUDICH, J. A. (1993) Molecular evolution of the myosin family: relationships derived from comparisons of amino acid sequences. Proc. Natl. Acad. Sci. USA 90, 659–63.Google Scholar
  11. GRANGE, R. W., VANDENBOOM, R. & HOUSETON, M. E. (1993) Physiological significance of myosin phosphorylation in skeletal muscle. Can. J. Applied Physiol. 28, 229–42.Google Scholar
  12. HAMMER, J. A.III (1994) The structure and function of unconventional myosins: a review. J. Musc. Res. Cell Motil. 15, 1–10.Google Scholar
  13. JONES, T. A., ZOU, J. Y., COWAN, S. W. & KJELDGAARD, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–19.Google Scholar
  14. KARESS, R. E., CHANG, X.-J., EDWARDS, K. A., KULKARNI, S., AGUILERA, I. & KIEHART, D. P. (1991) The regulatory light chain of nonmuscle myosin is encoded by spaghetti squash, a gene required for cytokinesis in Drosophila. Cell 65, 1177–89.Google Scholar
  15. KAWASAKI, H. & KRETSINGER, R. H. (1994) Calcium binding proteins 1: EF-hands. Protein Profile 1.Google Scholar
  16. KETCHUM, A. S., STEWART, C. T., STEWART, M. & KIEHART, D. P. (1990) Complete sequence of the Drosophila nonmuscle myosin heavy chain transcript: conserved sequences in the myosin tail and differential splicing in the 5′ untranslated sequence. Proc. Natl. Acad. Sci. USA 87, 6316–20.Google Scholar
  17. KIEHART, D. P. & FEGHALI, R. (1986) Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103, 1517–25.Google Scholar
  18. KIEHART, D. P., LUTZ, M. S., CHAN, D., KETCHUM, A. S., LAYMON, R. A., NGUYEN, B. & GOLDSTEIN, L. S. B. (1989) Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family. EMBO J. 8, 913–22.Google Scholar
  19. KIEHART, D. P., KETCHUM, A., YOUNG, P., LUTZ, D., ALFENITO, M. R., CHANG, X.-J., AWOBULUYI, M., PESACRETA, T. C., INOUÉ, S., STEWART, C. T. & CHEN, T.-L. (1990) Contractile proteins in Drosophila development. Ann. N. Y. Academy Sci. 582, 233–51.Google Scholar
  20. LINDSLEY, D. L. & ZIMM, G. G. (1992) The Genome of Drosophila melanogaster. New York: Academic Press, Inc.Google Scholar
  21. MAITA, T., YAJIMA, E., NAGATA, S., MIYANISHI, T., NAKAYAMA, S. & MATSUDA, G. (1991) The primary structure of skeletal muscle myosin heavy chain: IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain. J. Biochem 110, 75–87.Google Scholar
  22. NAKAYAMA, S., MONCRIEF, N. D. & KRETSINGER, R. H. (1992) Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J. Mol Evol. 34, 416–48.Google Scholar
  23. NYITRAY, L., GOODWIN, E. B., & SZENT-GYORGYI, A. G. (1991) Complete primary structure of a scallop striated muscle myosin heavy chain. Sequence comparison with other heavy chains reveals regions that might be critical for regulation. J. Biol. Chem. 266, 18469–76.Google Scholar
  24. OLIVER, B., PERRIMON, N. & MAHOWALD, A. P. (1988) Genetic evidence that the sans fille locus is involved in Drosophila sex determination. Genetics 120, 159–71.Google Scholar
  25. POOLE, S. J., LAWRENCE, L. M., DREES, B. & KORNBERG, T. (1985) The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell 40, 37–43.Google Scholar
  26. POLLENZ, R. S. & CHISHOLM, R. L. (1991) Dictyostelium discoideum essential myosin light chain: gene structure and characterization. Cell Motil. Cytoskeleton 20, 83–94.Google Scholar
  27. RAYMENT, I., RYPNIEWSKI, W. R., SCHMIDT-BASE, K., SMITH, R., TOMCHICK, D. R., BENNING, M. M., WINKELMANN, D. A., WESENBERG, G. & HOLDEN, H. M. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–65.Google Scholar
  28. REINHARD, J., SCHEEL, A. A., DIEKMANN, D., HALL, A., RUPPERT, C. & BAHLER, M. (1995) A novel type of myosin implicated in signalling by rho family GTPases. EMBO. J. 14, 697–704.Google Scholar
  29. SOMLYO, A. P. & SOMLYO, A. V. (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–6.Google Scholar
  30. SPUDICH, J. A. (1994) How molecular motors work. Nature 372, 515–18.Google Scholar
  31. SPUDICH, J. A. & WARRICK, H. M. (1991) A tale of two motors. Curr. Op. Struct. Biol. 1, 264–9.Google Scholar
  32. TOWER, J., KARPEN, G. H., CRAIG, N. & SPRADLING, A. C. (1993) Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133, 347–59.Google Scholar
  33. TRYBUS, K. M. (1994a) Role of myosin light chains. J. Muscle Res. Cell Motil. 15, 587–94.Google Scholar
  34. TRYBUS, K. M. (1994b) Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J. Biol. Chem. 269, 20819–22.Google Scholar
  35. XIE, X., HARRISON, D. H., SCHLICHTING, I., SWEET, R. M., KALABOKIS, V. N., SZENT-GYORGYI, A. G. & COHEN, C. (1994) Structure of the regulatory domain of scallop myosin at 2.8 angstrom resolution. Nature 368, 306–12.Google Scholar
  36. YOUNG, P. E., RICHMAN, A. M., KETCHUM, A. S. & KIEHART, D. P. (1993) Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes & Dev. 7, 29–41.Google Scholar
  37. ZHAO, J. J. & PICK, L. (1993) Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365, 448–51.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Kevin A. Edwards
    • 1
    • 2
  • Xiao-Jia Chang
    • 2
    • 3
  • Daniel P. Kiehart
    • 1
    • 2
  1. 1.Department of Cell BiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Cellular and Developmental Biology, Harvard Biological LaboratoriesHarvard UniversityCambridgeUSA
  3. 3.Genetics InstituteCambridgeUSA

Personalised recommendations