International Journal of Computer Vision

, Volume 3, Issue 2, pp 155–175 | Cite as

A mathematical analysis of the motion coherence theory

  • Alan L. Yuille
  • Norberto M. Grzywacz


In motion perception, there are a number of important phenomena involving coherence. Examples include motion capture and motion cooperativity. We propose a theoretical model, called the motion coherence theory, that gives a possible explanation for these effects [1,2]. In this framework, the aperture problem can also be thought of as a problem of coherence and given a similar explanation. We propose the concept of a velocity field defined everywhere in the image, even where there is no explicit motion information available. Theough a cost function, the model imposes smoothness on the velocity field in a more general way than in previous theories. In this paper, we provide a detailed theoretical analysis of the motion coherence theory. We discuss its relations with previous theories and show that some of them are approximations to it. A second paper [3] provides extensions for temporal coherence and comparisons to psychophysical phenomena. The theory applies to both short-range and long-range motion. It places them in the same computational framework and provides a way to define interactions between the two processes.


Coherence Cost Function Computer Vision Velocity Field Computer Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Yuille and N.M. Grzywacz, “A computational theory for the perception of coherent visual motion,” Nature 333: 71–74, 1988.Google Scholar
  2. 2.
    A.L. Yuille and N.M. Grzywacz, “The motion coherence theory,” Proc. 2nd Intern. Conf. Computer Vision, Tampa, FL, pp. 344–353, 1988.Google Scholar
  3. 3.
    N.M. Grzywacz, J.A. Smith, and A.L. Yuille, Proc. IEEE' Workshop on Visual Motion., Irvine, CA, pp. 148–155, 1989.Google Scholar
  4. 4.
    K. Koffka, Principles of Gestalt Psychology Harcourt, Brace and Wood: New York, 1935.Google Scholar
  5. 5.
    V.S. Ramachandran and S.M. Anstis, “Displacement thresholds for coherent apparent motion random dotpatterns,” Vision Research 24:1719–1724, 1983.Google Scholar
  6. 6.
    D.W. Williams and R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Research 24:55–62, 1984.Google Scholar
  7. 7.
    D.W. Williams, G. Philips, and R. Sekuler, “Hysteresis in the perception of motion direction: evidence for neural cooperativity, Nature 324:253–255, 1986.Google Scholar
  8. 8.
    A.L. Yuille and S. Ullman, “Rigidity and smoothness”, A.I. Memo 989, MIT Artif. Intell. Lab., Cambridge, MA, 1987.Google Scholar
  9. 9.
    E.H. Adelson and J. Bergen, “Spatiotemporal energy models for the perception of motion”, J. Opt. Soc. Am. A. 2:284–299, 1985.Google Scholar
  10. 10.
    B.K.P. Horn and B.G. Schunek, “Determining optical flow”, Artificial Intelligence 17:185–203, 1981.Google Scholar
  11. 11.
    E. Hildreth, The Measurement of Visual Motion, MIT Press: Cambridge, MA, 1984.Google Scholar
  12. 12.
    S. Ulman, The Interpretation of Visual Motion. MIT Press, Cambridge, MA, 1979.Google Scholar
  13. 13.
    D. Marr and S. Ullman, “Directional selectivity and its use in early visual processing”, Proc. Roy. Soc. London B 211:151–180, 1981.Google Scholar
  14. 14.
    E.H. Adelson and J.A. Movshon, “Phenomenal coherence of moving visual patterns”, Nature 300:523–525, 1982.Google Scholar
  15. 15.
    K. Nakayama and G.H. Silverman, “The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines”, Vision Research 28:739–746, 1988.Google Scholar
  16. 16.
    K. Nakayama and G.H. Silverman. “The aperture problem—II. Spatial integration of velocity information along contours”, Vision Research 28: 747–753, 1988.Google Scholar
  17. 17.
    M. Biederman-Thorson, J. Thorson, and G.D. Lange. “Apparent movement due to closely spaced sequentially flashed dots in the human peripheral field of vision”, Vision Research 11:889–903, 1971.Google Scholar
  18. 18.
    O.J. Braddick, “A short range process in apparent motion”, Vision Research 14:519–527, 1974.Google Scholar
  19. 19.
    O.J. Braddick, “Low-level process in apparent motion”, Phil. Trans. Roy. Soc. London B. 290:137–151, 1980.Google Scholar
  20. 20.
    C.L. Baker and O.J. Braddick. “Does segregation of differently moving areas depend on relative or absolute displacement?” Vision Research 22:851–856, 1982.Google Scholar
  21. 21.
    J.J. Chang and B. Julesz, “Displacement limits for spatial frequency filtered random-dot cinematograms in apparent motion”, Vision Research 23:1379–1385, 1983.Google Scholar
  22. 22.
    J.T. Petersik, R. Pufahl, and E. Krasnoff, “Failure to find an absolute retinal limit of a putative short-range process in apparent motion”. Vision Research 23:1663–1670, 1983.Google Scholar
  23. 23.
    K. Nakayama and G.H. Silverman. “Temporal and spatial characteristics of the upper displacement limit for motion in random dots”, Vision Research 24:293–299, 1984.Google Scholar
  24. 24.
    N.M. Grzywacz, “Interactions between minimal mapping and inertia in long-range apparent motion”, Invest. Ophthalmol. Vision 28:300, 1987.Google Scholar
  25. 25.
    N.M. Grzywacz, “The effects of past motion information on long-range apparent motion”. In preparation.Google Scholar
  26. 26.
    B. Hassenstein and W.E. Reichardt, “Systemtheoretische analyse de zeit, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des russelkafers chlorophanus”, Z. Natureforsch. 11b:513–524, 1956.Google Scholar
  27. 27.
    J.P.H. van Santen and G. Sperling. “A temporal covariance model of motion perception”, J. Opt. Soc. Am. A 1:451–473, 1985.Google Scholar
  28. 28.
    A.B. Watson and A.J. Ahumada, “Model of human visualmotion sensing”, J. Opt. Soc. Am. A 2: 322–341, 1985.Google Scholar
  29. 29.
    D. Heeger, “A model for the extraction of image flow”, J. Opt. Soc. Am. A. 4:1455–1471, 1987.Google Scholar
  30. 30.
    H. Bulthoff, J. Little, and T. Poggio, “A parallel algorithm for real-time computation of optical flow, Nature 337: 549–553, 1989.Google Scholar
  31. 31.
    K. Wohn and A. Waxman, ⊙Contour evolution, neighborhood deformation and local image flow: Curved surfaces in motion”, Tech. Rept. 134, University of Maryland's Center for Automation Research. College Park, MD, 1985.Google Scholar
  32. 32.
    A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems. Winston; Washington, DC, 1977.Google Scholar
  33. 33.
    M. Bertero, T. Poggio, and V. Torre “Regularization of illposed problems”, A.I. Memo. 924, MIT Artif. Intell. Lab., Cambridge, MA, 1987.Google Scholar
  34. 34.
    D. Shulman and J. Aloimonos “Boundary preserving regularization: theory part I”, Tech. Rept. 356, University of Maryland's Center for Automation Research. College Park, MD, 1988.Google Scholar
  35. 35.
    J. Duchon, Lecture Notes in Mathematics, vol. 571. W. Schempp, and K. Zeller (eds.), Springer-Verlag: Berlin, West Germany, 1979.Google Scholar
  36. 36.
    D. Marr and E.C. Hildreth, “Theory of edge detection”, Proc. Roy. Soc. London B 207:187–217, 1980.Google Scholar
  37. 37.
    A.L. Yuille and T. Poggio, “Scaling theorems for zerocrossings”, A.I. Memo. 722, MIT Artif. Intell. Lab., Cambridge, MA, 1983.Google Scholar
  38. 38.
    A. Witkin. “Scale-space filtering”, Proc. 8th Intern. Joint Conf. Artif. Intell., Karlsruhe, West Germany, pp. 1019–1021, 1983.Google Scholar
  39. 39.
    T. Poggio, H. Vorhees, and A.L. Yuille, “A regularized approach to edge detection”. A.I. Memo, 833, MIT Artif. Intell. Lab., Cambridge, MA, 1985.Google Scholar
  40. 40.
    N.M. Grzywacz and A.L. Yuille, “Massively parallel implementations of theories for apparent motion”, Spatial Vision, 3:15–44, 1988.Google Scholar
  41. 41.
    P.A. Kolers, Aspects of Motion Perception. Pergamon Press; Oxford, England, 1972.Google Scholar
  42. 42.
    J.A. Whecler and R.P. Feynman, Rev. Mod. Phys. 17:159 1945.Google Scholar
  43. 43.
    J.A. Wheeler and R.P. Feynman, Rev. Mod. Phys. 21:425, 1949.Google Scholar
  44. 44.
    M. Green, “Inhibition and facilitation of apparent motion by real motion,” Vision Research 23: 861–865, 1983.Google Scholar
  45. 45.
    A.L. Yuille, “The smoothest velocity field and token matching schemes”, A.I. Memo, 724, MIT Artif. Intell. Lab., Cambridge, MA, 1984.Google Scholar
  46. 46.
    A.L. Yuille, “Energy functions and analog networks”, A.I. Memo, 987. MIT Artif. Intell, Lab., Cambridge, MA, 1987.Google Scholar
  47. 47.
    E. Gamble and T. Poggio. “Visual integration and detection of discontinuities: The key role of intensity edges”. A.I. Memo. 970, MIT Artif. Intell. Lab., Cambridge, MA, 1987.Google Scholar
  48. 48.
    J. Hutchinson et al., “Computing motion using analog and binary resistive networks”, Computer 21:52–63, 1988.Google Scholar
  49. 49.
    V.S. Ramachandran and S.M. Anstis, “Extrapolation of motion path in human visual perception” Vision Research 23:83–85, 1983.Google Scholar
  50. 50.
    S.M. Anstis and V.S. Ramachandran, “Visual intertia in apparent motion”, Vision Research 27: 755–764, 1987.Google Scholar
  51. 51.
    N.M. Grzywacz”, “Properties of generalized minimal mapping theories for apparent motion”. J. Opt. Soc. Am. A 3:72, 1986.Google Scholar
  52. 52.
    R.M. Siegel and R.A. Andersen, “Perception of three-dimensional structure from motion in monkey and man”, Nature 331:259–261, 1988.Google Scholar
  53. 53.
    M. Fahle and T. Poggio, “Visual hyperacuity: Spatiotemporal interpolation in human vision”, Proc. Roy. Soc. London B. 213:451–477, 1981.Google Scholar
  54. 54.
    W. Reichardt, R.W. Schlogi, and M. Egelhaaf, Die Naturwissenschaften. In press.Google Scholar
  55. 55.
    D. Marr, Vission, Freeman: San Francisco, CA, 1982.Google Scholar
  56. 56.
    A.L. Yuille and N.M. Grzywacz, “A model for the estimate of local image velocity by cells in the visual cortex”. In preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Alan L. Yuille
    • 1
  • Norberto M. Grzywacz
    • 1
  1. 1.Harvard University Division of Applied SciencesCambridge

Personalised recommendations