Journal of Intelligent and Robotic Systems

, Volume 3, Issue 3, pp 201–212 | Cite as

Kinematic control of redundant robot manipulators: A tutorial

  • Bruno Siciliano
Article

Abstract

In this paper, we present a tentatively comprehensive tutorial report of the most recent literature on kinematic control of redundant robot manipulators. Our goal is to lend some perspective to the most widely adopted on-line instantaneous control solutions, namely those based on the simple manipulator's Jacobian, those based on the local optimization of objective functions in the null space of the Jacobian, those based on the task space augmentation by additional constraint tasks (with task priority), and those based on the construction of inverse kinematic functions.

Key words

Redundant manipulators robot kinematic control singularities pseudoinverses optimization methods projection operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeles, J., 1988, Isotropy criteria in the kinematic design and control of redundant manipulators, Preprints of the NATO Advanced Research Workshop ‘Robots with Redundancy: Design, Sensing and Control’, Salò, Italy, to be published by Springer-Verlag.Google Scholar
  2. Asada, H. and Slotine, J.-J. E., 1986, Robot Analysis and Control, Wiley Interscience, New York.Google Scholar
  3. Baillieul, J., 1985, Kinematic programming alternatives for redundant manipulators, Proc. 1985 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Silver Spring, pp. 722–728.Google Scholar
  4. Baillieul, J., 1986, Avoiding obstacles and resolving kinematic redundancy, Proc. 1986 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 1698–1704.Google Scholar
  5. Baillieul, J., 1987. A constraint oriented approach to inverse problems for kinematically redundant manipulators, Proc. 1987 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 1827–1833.Google Scholar
  6. Baillieul, J., Hollerbach, J. M., and Brockett, R. W., 1984, Programming and control of kinematically redundant manipulators, Proc. 23rd IEEE Conf. Decision and Control, IEEE, New York, pp. 768–774.Google Scholar
  7. Baker, D. R. and Wampler, C. W., 1988, On the inverse kinematics of redundant manipulators, Internat. J. Robot. Res. 7(2), 3–21.Google Scholar
  8. Chang, P. H., 1987, A closed-form solution for inverse kinematics of robot manipulators, IEEE J. Robot. Automat. 3, 393–403.Google Scholar
  9. Chevallereau, C. and Khalil, W., 1988, A new method for the solution of the inverse kinematics of redundant robots, Proc. 1988 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 37–42.Google Scholar
  10. Chiu, S. L., 1988, Task compatibility of manipulator postures, Internat. J. Robot. Res. 7(5), 13–21.Google Scholar
  11. Dubey, R. V., Euler, J. A., and Babcock, S. M., 1988, An efficient gradient projection optimization scheme for a seven-degree-of-freedom redundant robot with spherical wrist, Proc. 1988 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 28–36.Google Scholar
  12. Egeland, O., 1987, Task-space tracking with redundant manipulators, IEEE J. Robot. Automat. 3, 471–475.Google Scholar
  13. Hsu, P., Hauser, J., and Sastry, S., 1988. Dynamic control of redundant manipulators, Proceedings of the 1988 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 183–187.Google Scholar
  14. Kazerounian, K. and Wang, Z., 1988, Global versus local optimization in redundancy resolution of robotic manipulators, Internat. J. Robot. Res. 7(5), 3–12.Google Scholar
  15. Klein, C. A. and Blaho, B. E., 1987, Dexterity measures for the design and control of kinematically redundant manipulators, Internat. J. Robot. Res. 6(2), 72–83.Google Scholar
  16. Klein, C. A. and Huang, C. H., (1983), Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Trans. Systems Man Cybernet. 13, 245–250.Google Scholar
  17. Liégois, A., 1977, Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Systems Man Cybernet. 7, 868–871.Google Scholar
  18. Maciejewski, A. A. and Klein, C. A., 1985, Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, Internat. J. Robot. Res. 4(3), 109–117.Google Scholar
  19. Mayorga, R. V. and Wong, A. K. C., 1988, A singularities avoidance approach for the optimal local path generation of redundant manipulators, Proc. 1988 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 49–54.Google Scholar
  20. Nakamura, Y. and Hanafusa, H., 1986, Inverse kinematic solutions with singularity robustness for robot manipulator control, Trans. ASME J. Dynamic Systems, Measurement, and Control 108, 163–171.Google Scholar
  21. Nakamura, Y. and Hanafusa, H., 1987, Optimal redundancy control of robot manipulators, Internat. J. Robot. Res. 6(1), 32–42.Google Scholar
  22. Nakamura, Y., Hanafusa, H., and Yoshikawa, T., 1987, Task-priority based redundancy control of robot manipulators, Internat. J. Robot. Res. 6(2), 3–15 (1987).Google Scholar
  23. Sciavicco, L. and Siciliano, B., 1987a, Solving the inverse kinematic problem for robotic manipulators, Proc. 6th CISM-IFToMM Symp. Theory and Practice of Robots and Manipulators, (eds. A., Morecki, G., Bianchi and K., Kědzior), MIT Press, Cambridge, pp. 107–114.Google Scholar
  24. Sciavicco, L. and Siciliano, B., 1987b, A dynamic solution to the inverse kinematic problem for redundant manipulators, Proc. 1987 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 1081–1087.Google Scholar
  25. Sciavicco, L. and Siciliano, B., 1988a, On the solution of inverse kinematics of redundant manipulators, Preprints of the NATO Advanced Research Workshop ‘Robots With Redundancy: Design, Sensing and Control’, Salò, Italy, to be published by Springer-Verlag.Google Scholar
  26. Sciavicco, L. and Siciliano, B., 1988b, A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE J. Robot. Automat. 4, 403–410.Google Scholar
  27. Sciavicco, L., Siciliano, B., and Chiacchio, P., 1988, On the use of redundancy in robot kinematic control, Proc. 1988 Amer. Control Conf., Omnipress, Madison, pp. 1370–1375.Google Scholar
  28. Shamir, T. and Yomdin, Y., 1988, Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Trans. Automat. Control 33, 1004–1009.Google Scholar
  29. Slotine, J.-J. E. and Yoerger, D. R., 1987, A rule-based inverse kinematics algorithm for redundant manipulators, Internat. J. Robot. Automat. 2, 86–89.Google Scholar
  30. Suh, K. C. and Hollerbach, J. M., 1987, Local versus global torque optimization of redundant manipulators, Proc. 1987 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 619–624.Google Scholar
  31. Tsai, Y. T. and Orin, D. E., 1987, A strictly convergent real-time solution for inverse kinematics of robot manipulators, J. Robot. Systems 4(4), 477–501.Google Scholar
  32. Vukobratović, M. and Kirćanski, M., 1984, A dynamic approach to nominal trajectory synthesis for redundant manipulators, IEEE Trans. Systems Man Cybernet. 14, 580–586.Google Scholar
  33. Walker, I. D. and Marcus, S. I., 1988, Subtask performance by redundancy resolution for redundant robot manipulators, IEEE J. Robot. Automat. 4, 350–354.Google Scholar
  34. Wampler, C. W., 1986, Manipulator inverse kinematic solutions based on dampled least-squares solutions, IEEE Trans. Systems Man Cybernet. 16, 93–101.Google Scholar
  35. Wampler, C. W., 1987, Inverse kinematic functions for redundant manipulators, Proc. 1987 IEEE Internat. Conf. Robot. Automat., IEEE Computer Society Press, Washington, pp. 610–617 (1987).Google Scholar
  36. Wampler, C. W., 1988a, The inverse function approach to kinematic control of redundant manipulators, Proc. 1988 Amer. Control Conf., Omnipress, Madison, pp. 1364–1369.Google Scholar
  37. Wampler, C. W., 1988b, Winding number analysis of invertible workspaces for redundant manipulators, Internat. J. Robot. Res. 7(5), 22–31.Google Scholar
  38. Whitney, D. E., 1969, Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man-Machine Systems 10, 47–53.Google Scholar
  39. Yoshikawa, T., 1985a, Dynamic manipulability of robot manipulators, J. Robot. Systems 2(1), 113–124.Google Scholar
  40. Yoshikawa, T., 1985b, Manipulability of robotic mechanisms, Internat. J. Robot. Res. 4(2), 3–9.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Bruno Siciliano
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità degli Studî di Napoli “Federico II”NapoliItaly

Personalised recommendations