Journal of Computer-Aided Molecular Design

, Volume 7, Issue 6, pp 649–658 | Cite as

A common motif in G-protein-coupled seven transmembrane helix receptors

  • L. Oliveira
  • A. C. M. Paiva
  • G. Vriend
Research Papers

Summary

G-protein-coupled receptors all share the seven transmembrane helix motif similar to bacteriorhodopsin. This similarity was exploited to build models for these receptors. From an analysis of a multi-sequence alignment of 225 G-protein-coupled receptors belonging to the rhodopsin-like superfamily, conclusions could be drawn about functional residues. Seven residues in the transmembrane regions are conserved throughout all aligned receptors. These residues cluster at the cytosolic side of the transmembrane helices and are for all rhodopsin-like G-protein-coupled receptors implied in signal transduction. An analysis of correlated mutations reveals a number of residues, both in the helices and in the cytosolic loops, that might be important in the signal transduction pathway in subfamilies of this receptor family.

Key words

G-protein-coupled receptors Modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birdsall, N.J.M., Trends Pharmacol. Sci., 12 (1991) 9.Google Scholar
  2. 2.
    Mollon, J., Nature, 351 (1991) 696.Google Scholar
  3. 3.
    Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J. and Sealfon, S.C., DNA Cell Biol., 11 (1992) 1.Google Scholar
  4. 4.
    Strosberg, A.D., Eur. J. Biochem., 196 (1991) 1.Google Scholar
  5. 5.
    Savarese, T.M. and Fraser, C.M., Biochem. J., 283 (1992) 1.Google Scholar
  6. 6.
    Barnard, E., Trends Biochem. Sci., 17 (1992) 368.Google Scholar
  7. 7.
    Attwood, T.K. and Findlay, J.B.C., Protein Eng., 6 (1993) 167–176.Google Scholar
  8. 8.
    Attwood, T.K. and Findlay, J.B.C., 7TM, 2 (1993).Google Scholar
  9. 9.
    Konig, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. and Hofmann, K.P., Proc. Natl. Acad. Sci. USA, 86 (1989) 6878.Google Scholar
  10. 10.
    Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. and Downing, K.H., J. Mol. Biol., 212 (1990) 899.Google Scholar
  11. 11.
    Nathans, J., Biochemistry, 31 (1992) 4931.Google Scholar
  12. 12.
    Dohlman, H.G., Thorne, J., Caron, M.C. and Lefkowitz, R.J., Annu. Rev. Biochem., 60 (1991) 653.Google Scholar
  13. 13.
    Hibert, M., Trumpp-Kallmeyer, S., Bruinvels, A. and Hoflack, J., Mol. Pharmacol., 40 (1991) 8.Google Scholar
  14. 14.
    Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A. and Hibert, M., J. Med. Chem., 35 (1992) 3448.Google Scholar
  15. 15.
    Cronet, P., Sander, C. and Vriend, G., Protein Eng., 6 (1993) 59.Google Scholar
  16. 16.
    Sander, C. and Schneider, R., Protein Struct. Funct. Genet., 9 (1991) 56.Google Scholar
  17. 17.
    Libert, F., Parmentier, M., Lefort, A., Dinsart, C., VanSande, J., Maenhaut, C., Simons, M.-J., Dumont, J.E. and Simons, M.-J., Dumont, J.E. and Vassart, G., Science, 244 (1989) 569.Google Scholar
  18. 18.
    Loosfelt, H., Mirashi, M., Atger, M., Salesse, R., Thi, M.T.V.H.-L., Jolivet, A., Guiochon-Mantel, A., Sar, S., Jallal, B., Garnier, J. and Milgrom, E., Science, 245 (1989) 525.Google Scholar
  19. 19.
    Hershey, A.D. and Krause, J.E., Science, 247 (1999) 958.Google Scholar
  20. 20.
    Sunahara, R.K., Niznik, H.B., Weiner, D.M., Stormann, T.M., Brann, M.R., Kennedy, J.L., Gelernter, J.E., Rozmahel, R., Yang, Y., Israel, Y., Seeman, P. and O'Dowd, B.F., Nature, 347 (1990) 80.Google Scholar
  21. 21.
    Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S. and Narumiya, S., Nature, 349 (1991) 617.Google Scholar
  22. 22.
    VanTol, H.H.M., Bunzow, J.R., Guan, H.-C., Sunahara, R.K., Seeman, P., Niznik, H.B. and Civelli, O., Nature, 350 (1991) 610.Google Scholar
  23. 23.
    Sunahara, R.K., Guan, H.-C., O'Dowd, B.F., Seeman, P., Laurier, L.G., Ng, G., George, S.R., Torchia, J., VanTol, H.H.M. and Niznik, H.B., Nature, 350 (1991) 614.Google Scholar
  24. 24.
    Gerard, N.P. and Gerard, C., Nature, 349 (1991) 614.Google Scholar
  25. 25.
    Holmes, W.E., Lee, J., Kuang, W.-I., Rice, G.C. and Wood, W.I., Science, 253 (1991) 1278.Google Scholar
  26. 26.
    Gribskov, M., Luethy, R. and Eisenberg, D., Methods Enzymol., 183 (1990) 146.Google Scholar
  27. 27.
    Henikoff, S. and Henikoff, J.G., Nucleic Acids Res., 19 (1991) 6565.Google Scholar
  28. 28.
    SWISS-PROT Protein Sequence Database, EMBL Data Library, D-69117 Heidelberg, Germany and Amos Bairoch, Department de Biochimie Medicale, Centre Medical Universitaire, 1211 Geneva 4, Switzerland.Google Scholar
  29. 29.
    PIR, NBRF, Georgetown University Medical Center, 3900 Reservoir Road N.W., Washington, DC.Google Scholar
  30. 30.
    Sander, C. and Schneider, R., In Soumpasis, D.M. and Jovin, T.M. (Eds.) Computation of Biomolecular Structures, Springer Verlag, Berlin, 1992, pp. 15–28.Google Scholar
  31. 31.
    Goebel, U., Sander, C. and Valencia, A., submitted for publication.Google Scholar
  32. 32.
    Breckenridge, R. and Dufton, M.J., J. Mol. Evol., 26 (1987) 274.Google Scholar
  33. 33.
    Gregoret, L.M. and Sauer, R.T., Proc. Natl. Acad. Sci. USA, 90 (1993) 4246.Google Scholar
  34. 34.
    Oliveira, L., Paiva, A.C.M., Sander, C. and Vriend, G., submitted for publication.Google Scholar
  35. 35.
    Franke, R.R., Sakmar, T.P., Oprian, D.D. and Khorana, H.G., J. Biol. Chem., 263 (1988) 2119Google Scholar
  36. 36.
    Franke, R.R., Konig, B., Sakmar, T.P., Khorana, H.G. and Hofmann, K.P., Science, 250 (1990) 123.Google Scholar
  37. 37.
    Cotecchia, S., Exum, S., Caron, M.G. and Lefkowitz, R.J., Proc. Natl. Acad. Sci. USA, 87 (1990) 2896.Google Scholar
  38. 38.
    Cotecchia, S., Ostrowski, J., Kjelsberg, M.A., Caron, M.G. and Leflowitz, R.J., J. Biol. Chem., 267 (1992) 1633.Google Scholar
  39. 39.
    Kjelsberg, M.A., Cotecchia, S., Ostrowski, J., Caron, M.G. and Lefkowitz, R.J., J. Biol. Chem., 267 (1992) 1430.Google Scholar
  40. 40.
    Palm, D., Munch, G., Dees, C. and Hekman, M., FEBS Lett., 254 (1989) 89.Google Scholar
  41. 41.
    Cheung, A.H., Huang, R.-R.C., Graziano, M.P. and Strader, C.D., FEBS Lett., 279 (1991) 277.Google Scholar
  42. 42.
    Strader, C.D., Dixon, R.A.F., Cheung, A.H., Candelore, M.R., Blake, A.D. and Sigal, I.S., J. Biol. Chem., 262 (1987) 16439.Google Scholar
  43. 43.
    O'Dowd, B.F., Hnatowich, M., Regan, J.W., Leader, W.M., Caron, M.G. and Lefkowitz, R.J., J. Biol. Chem., 263 (1988) 15985.Google Scholar
  44. 44.
    Okamoto, T. and Nishimoto, I., J. Biol. Chem., 267 (1992) 8342.Google Scholar
  45. 45.
    Fraser, C.M., Chung, F.Z., Wang, C.D. and Venter, J.C., Proc. Natl. Acad. Sci. USA, 85 (1988) 5478.Google Scholar
  46. 46.
    Fraser, C.M., Wang, C.D., Robinson, D.A., Gocayne, J.D. and Venter, J.C., Mol. Pharmacol., 36 (1989) 840.Google Scholar
  47. 47.
    Horstman, D.A., Brandon, S., Wilson, A.L., Guyer, C.A., CragoeJr., E.J. and Limbird, L.E., J. Biol. Chem., 265 (1990) 21590.Google Scholar
  48. 48.
    Wess, I., Gdula, W.I. and Brann, M.R., EMBO J., 10 (1990) 3729.Google Scholar
  49. 49.
    Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S. and Dixon, R.A.F., J. Biol. Chem., 263 (1988) 10267.Google Scholar
  50. 50.
    Nakayama, T.A. and Khorana, H.G., J. Biol. Chem., 265 (1990) 15762.Google Scholar
  51. 51.
    Nakayama, T.A. and Khorana, H.G., J. Biol. Chem., 266 (1991) 4269.Google Scholar
  52. 52.
    Khorana, H.G., J. Biol. Chem., 267 (1992) 1.Google Scholar
  53. 53.
    Zhukovzky, E.A. and Oprian, D.D., Science, 251 (1991) 558.Google Scholar
  54. 54.
    Sakmar, T.P., Franke, R.R. and Khorana, H.G., Proc. Natl. Acad. Sci. USA, 86 (1989) 8309.Google Scholar
  55. 55.
    Nathans, J., Biochemistry, 29 (1990) 937.Google Scholar
  56. 56.
    Sakmar, T.P., Franke, R.R. and Khorana, H.G., Proc. Natl. Acad. Sci. USA, 88 (1991) 3079.Google Scholar
  57. 57.
    Strader, C.D., Candelore, M.R., Hill, W.S., Sigal, I.S. and Dixon, R.A.F., J. Biol. Chem., 264 (1989) 13572.Google Scholar
  58. 58.
    Weinstein, H., Mazucek, A.P., Osman, R. and Topial, S., Mol. Pharmacol., 29 (1986) 28.Google Scholar
  59. 59.
    Timmerman, H, Trends Pharmacol. Sci., 13 (1991) 6.Google Scholar
  60. 60.
    Freedman, R. and Jarnagin, K., In Bönner, G., Fritz, H., Unger, T., Roscher, A. and Luppertz, K. (Eds.) Recent Progress on Kinins, Birkhauser Verlag, Basel, 1992, pp. 487–496.Google Scholar
  61. 61.
    Weitz, C.J. and Nathans, J., Neuron, 8 (1992) 465.Google Scholar
  62. 62.
    Strader, C.D., Sigal, I.S. and Dixon, R.A.F., FASEB J., 3 (1989) 1825.Google Scholar
  63. 63.
    Bownds, D., Nature, 216 (1967) 1178.Google Scholar
  64. 64.
    Wang, J.K., McDowell, J.H. and Hargrave, P.A., Biochemistry, 19 (1980) 5111.Google Scholar
  65. 65.
    Mullen, E. and Akhtar, M., FEBS Lett., 132 (1981) 261.Google Scholar
  66. 66.
    Findlay, J.B.C., Brett, M. and Pappin, D.J.C., Nature, 293 (1981) 314.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • L. Oliveira
    • 1
  • A. C. M. Paiva
    • 1
  • G. Vriend
    • 2
  1. 1.Departamento de BiofisicaEscola Paulista MedicinaSão PauloBrazil
  2. 2.EMBLHeidelbergGermany

Personalised recommendations