Advertisement

Boundary-Layer Meteorology

, Volume 39, Issue 4, pp 379–401 | Cite as

Pressure drag and effective roughness length with neutral stratification

  • Stefan Emeis
Article

Abstract

A two-dimensional numerical mesoscale model is used to determine the pressure drag of sinoidal mountains and valleys in a neutral atmosphere. In the first part, pressure distributions and flow patterns for isolated obstacles are considered. For large aspect ratios, the pressure drag exerted by valleys becomes small compared to that of mountains. In the second part, interactions between several obstacles are investigated. For mountains, the drag on downstream obstacles is reduced considerably by the first obstacle when the obstacles are close together. For valleys there is a slight increase of the average drag exerted by each obstacle. In the limit for a large number of obstacles, average drag exerted by one mountain is equal to average drag for one valley. For smaller aspect ratios, this average drag can be entered into the resistence law from the Rossby number similarity theory to yield an ‘effective roughness length’.

Keywords

Atmosphere Aspect Ratio Stratification Flow Pattern Pressure Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes, R. A. and Warner, T. T.: 1978, ‘Development of Hydrodynamic Models Suitable for Air Pollution and other Mesometeorological Studies’, Mon. Weather Rev. 106, 1045–1078.Google Scholar
  2. Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers’, J. Atm. Sci. 25, 1015–1020.Google Scholar
  3. Clark, T. L. and Gall, R.: 1982, ‘Three-Dimensional Numerical Model Simulations of Airflow over Mountainous Terrain: A Comparison with Observations’, Mon. Weather Rev. 110, 766–791.Google Scholar
  4. Davies, H. C. and Phillips, P. D.: 1985, ‘Mountain Drag along the Gotthard Section During Alpex’, J. Atm. Sci. 42, 2093–2109.Google Scholar
  5. Dorwarth, G.: 1985, ‘Numerische Berechnung des Druckwiderstands typischer Geländeformen’, Dissertation, Institut für Meteorologie und Klimaforschung, Karlsruhe.Google Scholar
  6. Fiedler, F. and Panofsky, H. A.: 1972, ‘The Geostrophic Drag Coefficient and the ‘Effective’ Roughness Length’, Quart. J. Roy. Meteorol. Soc. 98, 213–220.Google Scholar
  7. Gross, G.: 1985, ‘An Explanation of the ‘Maloja-Serpent’ by Numerical Simulation’, Beitr. Phys. Atmosph. 58, 441–457.Google Scholar
  8. Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Roy. Meteorol. Soc. 101, 929–955.Google Scholar
  9. Kustas, W. P. and Brutsaert, W.: 1986, ‘Wind Profile Constants in a Neutral Atmospheric Boundary Layer over Complex Terrain’, Boundary-Layer Meteorol. 34, 35–54.Google Scholar
  10. Lettau, H.: 1969, ‘Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element Description’, J. Appl. Meteorol. 8, 828–832.Google Scholar
  11. Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advective Terms in a Numerical Mesoscale Model’, Mon. Weather Rev. 106, 1758.Google Scholar
  12. Mason, P. J.: 1985, ‘On the Parameterization of Orographic Drag’, ECMWF-Seminar 1985, Vol.2, pp. 139–165.Google Scholar
  13. Mason, P. J. and Sykes, R. I.: 1979a, ‘Separation Effects in Ekman Layer Flow over Ridges’, Quart. J. R. Meteorol. Soc. 105, 129–146.Google Scholar
  14. Mason, P. J. and Sykes, R. I.: 1979b, ‘Flow over an Isolated Hill of Moderate Slope’, Quart. J. R. Meteorol. Soc. 105, 383–395.Google Scholar
  15. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geoph. Space Phys. 20, 851–875.Google Scholar
  16. Nappo, C. J., 1977: ‘Mesoscale Flow over Complex Terrain During the Eastern Tennessee Trajectory Experiment (ETTEX)’, J. Appl. Meteorol. 16, 1186–1196.Google Scholar
  17. Newley, T. M. J.: 1985, ‘Turbulent Airflow over Hills’, Ph. D. Thesis, University of Cambridge, U.K.Google Scholar
  18. Peltier, W. R. and Clark, T. L.: 1979, ‘The Evolution and Stability of Finite-Amplitude Mountain Waves Part II: Surface Wave Drag and Severe Downslope Windstorms’, J. Atm. Sci. 36, 1498–1529.Google Scholar
  19. Pielke, R. A.: 1984, Mesoscale Meteorological Modelling, Academic Press, New York.Google Scholar
  20. Taylor, P. A.: 1977, ‘Numerical Studies of Neutrally Stratified Planetary Boundary Layer Flow over Gentle Topography I: Two-Dimensional Cases’, Boundary-Layer Meteorol. 12, 37–60.Google Scholar
  21. Taylor, P. A.: 1981, ‘Model Predictions of Neutrally Stratified Planetary Boundary Layer Flow over Ridges’, Quart. J. Roy. Meteorol. Soc. 107, 111–120.Google Scholar
  22. Taylor, P. A. and Gent, P. R.: 1980, ‘Modification of the Boundary Layer by Orography’, GARP Publ. Series No. 23, pp. 143-165.Google Scholar
  23. Thompson, R. S.: 1978, ‘Note on Aerodynamic Roughness Length for Complex Terrain’, J. Appl. Meteorol. 17, 1402–1403.Google Scholar
  24. Walmsley, J. L., Salmon, J. R., and Taylor, P. A.: 1982, ‘On the Application of a Model of Boundary-Layer Flow over Low Hills to Real Terrain’, Boundary-Layer Meteorol. 23, 17–46.Google Scholar
  25. Wippermann, F.: 1970, ‘The Two Constants in the Resistence Law for a Neutral Barotropic Boundary Layer of the Atmosphere’, Beitr. Phys. Atmosph. 43, 133–140.Google Scholar
  26. Zeman, O. and Tennekes, H.: 1977, ‘Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atm. Sci. 34, 111–123.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Stefan Emeis
    • 1
  1. 1.Institut für Meteorologie und Klimaforschung, Universität Karlsruhe/KernforschungszentrumKarlsruheF.R.G.

Personalised recommendations