Advertisement

Journal of Computer-Aided Molecular Design

, Volume 10, Issue 4, pp 305–320 | Cite as

Comparative docking studies on ligand binding to the multispecific antibodies IgE-La2 and IgE-Lb4

  • Christoph A. Sotriffer
  • Rudolf H. Winger
  • Klaus R. Liedl
  • Bernd M. Rode
  • Janos M. Varga
Research Papers

Summary

A large comparative study is presented in which the binding of approximately 30 different ligands to two IgE antibodies (La2 and Lb4) is analyzed by means of an automated-docking procedure based on simulated annealing. The method is able to reproduce experimentally verified binding orientations, as shown by application to the Ig-AN02-hapten complex. The main address of the study is to investigate the concept of antibody multispecificity. Problems and usefulness of docking in this context are discussed. The results indicate reasons for multispecific binding properties and how they can be understood from the topology of the binding site. Though similar in general behaviour, the two antibodies show interesting differences in their binding characteristics. The binding sites of both antibodies are described and the main interacting residues revealed.

Keywords

Simulated annealing Antibody specificity Binding-site analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RoittI., Essential Immunology, Blackwell Scientific Publications, Oxford, U.K., 1994.Google Scholar
  2. 2.
    StryerL., Biochemistry, 3rd ed., Freeman and Company, New York, NY, 1988.Google Scholar
  3. 3.
    BrandenC. and ToozeJ., Introduction to Protein Structure, Garland Publishing, New York, NY, 1991.Google Scholar
  4. 4.
    MariuzzaR.A., PhilippsS.E.V. and PoljakR.J., Annu. Rev. Biophys. Biophys. Chem., 16 (1987) 139.Google Scholar
  5. 5.
    DaviesR.D., PadlanE.A. and SheriffS., Annu. Rev. Biochem., 59 (1990) 439.Google Scholar
  6. 6.
    MianI.S., BradwellA.R. and OlsonA.J., J. Mol. Biol., 217 (1991) 133.Google Scholar
  7. 7.
    RichardsF.F., KonigsbergW.H., RosensteinR.W. and VargaJ.M., Science, 187 (1975) 130.Google Scholar
  8. 8.
    VargaJ.M., KalchschmidG., KleinG.F. and FritschP., Mol. Immunol., 28 (1991) 641.Google Scholar
  9. 9.
    ArevaloJ.H., TaussigM.J. and WilsonI.A., Nature, 365 (1993) 859.Google Scholar
  10. 10.
    DroupadiP.R., VargaJ.M. and LinthicumD.S., Mol. Immunol., 31 (1994) 537.Google Scholar
  11. 11.
    SotrifferC.A., LiedlK.R., WingerR.H., GamperA.M., KroemerR.T., LinthicumD.S., RodeB.M. and VargaJ.M., Mol. Immunol. 33 (1996) 129.Google Scholar
  12. 12.
    Winger, R.H., Liedl, K.R., Sotriffer, C.A., Gamper, A.M., Kroemer, R.T., Rode, B.M. and Varga, J.M., J. Molec. Recognition, in press.Google Scholar
  13. 13.
    ChothiaC. and LeskA.M., J. Mol. Biol. 196 (1987) 901.Google Scholar
  14. 14.
    SYBYL 6.1, Tripos Associates, Inc., St. Louis, MO.Google Scholar
  15. 15.
    WeinerS.J., KollmanP.A., CaseD.A., SinghU.C., GhioC., AlagonaG., ProfetaS. and WeinerP., J. Am. Chem. Soc., 106 (1984) 765.Google Scholar
  16. 16.
    WeinerS.J., KollmanP.A., NguyenD.T. and CaseD.A., J. Comput. Chem., 7 (1986) 230.Google Scholar
  17. 17.
    GoodsellD.S. and OlsonA.J., Proteins Struct. Funct. Genet., 8 (1990) 195.Google Scholar
  18. 18.
    MetropolisN., RosenbluthA., RosenbluthM., TellerA. and TellerE., J. Chem. Phys. 21 (1953) 1087.Google Scholar
  19. 19.
    GoodsellD.S., LaubleH., StoutC.D. and OlsonA.J., Proteins Struct. Funct. Genet., 17 (1993) 1.Google Scholar
  20. 20.
    FriedmanA.R., RobertsV.A. and TainerJ.A., Proteins Struct. Funct. Genet., 20 (1994) 15.Google Scholar
  21. 21.
    StoddardB.L. and KoshlandD.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 1146.Google Scholar
  22. 22.
    MengE.C., KuntzI.D., AbrahamD.J. and KelloggG.E., J. Comput.-Aided Mol. Design, 8 (1994) 299.Google Scholar
  23. 23.
    BrüngerA.T., LeahyD.J., HynesP.R. and FoxR.O., J. Mol. Biol., 221 (1991) 239.Google Scholar
  24. 24.
    SheriffS., HendricksonW.A. and SmithJ.L., J. Mol. Biol., 197 (1987) 272.Google Scholar
  25. 25.
    KabatE.A., WuT.T. and BilofskyH., J. Biol. Chem., 252 (1977) 6609.Google Scholar
  26. 26.
    RosenfeldR., VajdaS. and DeLisiC., Annu. Rev. Biophys. Biomol. Struct., 24 (1995) 677.Google Scholar
  27. 27.
    SegalD.M., PadlanE.A., CohenG.H., DaviesD.R., RudikoffS. and PotterM., Proc. Natl. Acad. Sci. USA, 71 (1974) 4298.Google Scholar
  28. 28.
    AmzelL.M., PoljakR.J., SaulF., VargaJ.M. and RichardsF.F., Proc. Natl. Acad. Sci. USA, 71 (1974) 1427.Google Scholar
  29. 29.
    JeffreyP.D., StrongR.K., SiekerL.C., ChangC.Y.Y., CampbellR.L., PetskoG.A., HaberE., MargoliesM.N. and SheriffS., Proc. Natl. Acad. Sci. USA, 90 (1993) 10310.Google Scholar
  30. 30.
    StanfieldR.L., FieserT.M., LernerR.A. and WilsonI.A., Science, 248 (1990) 712.Google Scholar
  31. 31.
    RiniJ.M., Schulze-GahmenU. and WilsonI.A., Science, 255 (1992) 959.Google Scholar
  32. 32.
    EdmundsonA.B., ElyK.R. and HerronJ.N., Mol. Immunol., 21 (1984) 561.Google Scholar
  33. 33.
    GuddatL.W., ShanL., AnchinJ.M., EdmundsonA.B. and LinthicumD.S., J. Mol. Biol., 236 (1994) 247.Google Scholar
  34. 34.
    VargaJ.M., KalchschmidG., KleinG.F. and FritschP., Mol. Immunol., 6 (1991) 655.Google Scholar
  35. 35.
    InmanJ.K., In BellG.I., PerelsonA.S. and PimbleyG.H. (Eds.) Theoretical Immunology, Marcel Dekker, New York, NY, 1978, pp. 243–278.Google Scholar
  36. 36.
    BrooksIIIC.L., KarplusM. and PettittB.M., Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Advances in Chemical Physics, Vol. 71, Wiley, New York, NY, 1988.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Christoph A. Sotriffer
    • 1
  • Rudolf H. Winger
    • 1
  • Klaus R. Liedl
    • 1
  • Bernd M. Rode
    • 1
  • Janos M. Varga
    • 1
  1. 1.Theoretical Chemistry Department, Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations