Journal of Computer-Aided Molecular Design

, Volume 10, Issue 4, pp 293–304 | Cite as

Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4

  • Garrett M. Morris
  • David S. Goodsell
  • Ruth Huey
  • Arthur J. Olson
Research Papers


AutoDock 2.4 predicts the bound conformations of a small, flexible ligand to a nonflexible macromolecular target of known structure. The technique combines simulated annealing for conformation searching with a rapid grid-based method of energy evaluation based on the AMBER force field. AutoDock has been optimized in performance without sacrificing accuracy; it incorporates many enhancements and additions, including an intuitive interface. We have developed a set of tools for launching and analyzing many independent docking jobs in parallel on a heterogeneous network of UNIX-based workstations. This paper describes the current release, and the results of a suite of diverse test systems. We also present the results of a systematic investigation into the effects of varying simulated-annealing parameters on molecular docking. We show that even for ligands with a large number of degrees of freedom, root-mean-square deviations of less than 1 Å from the crystallographic conformation are obtained for the lowest-energy dockings, although fewer dockings find the crystallographic conformation when there are more degrees of freedom.


Inhibitor Receptor Simulated annealing Drug design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BlaneyJ.M. and DixonJ.S., Perspect. Drug Discov. Design, 1 (1993) 301.Google Scholar
  2. 2.
    KuntzI.D., MengE.C. and ShoichetB.K., Acc. Chem. Res., 27 (1994) 117.Google Scholar
  3. 3.
    RosenfeldR., VajdaS. and DeLisiC., Annu. Rev. Biophys. Biomol. Struct., 24 (1995) 677.Google Scholar
  4. 4.
    BöhmH.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.Google Scholar
  5. 5.
    KuntzI.D., BlaneyJ.M., OatleyS.J., LangridgeR. and FerrinT.E., J. Mol. Biol., 161 (1982) 269.Google Scholar
  6. 6.
    GoodsellD.S. and OlsonA.J., Proteins Struct. Funct. Genet., 8 (1990) 195.Google Scholar
  7. 7.
    GoodsellD.S., LaubleH., StoutC.D. and OlsonA.J., Proteins Struct. Funct. Genet., 17 (1993) 1.Google Scholar
  8. 8.
    LunneyE.A., HagenS.E., DomagalaJ.M., HumbletC., KosinskiJ., TaitB.D., WarmusJ.S., WilsonM., FergusonD., HupeD., TumminoP.J., BaldwinE.T., BhatT.N., LiuB., and EricksonJ.W., J. Med. Chem. 37 (1994) 2664.Google Scholar
  9. 9.
    Vara PrasadJ.V.N., ParaK.S., OrtwineD.F., DunbarJr.J.B., FergusonD., TumminoP.J., HupeD., TaitB.D., DomagalaJ.M., HunbletC., BhatT.N., LiuB., GuerinD.M.A., BaldwinE.T., EricksonJ.W. and SawyerT.K., J. Am. Chem. Soc., 116 (1994) 6989.Google Scholar
  10. 10.
    StoddardB.L. and KoshlandD.E., Nature, 358 (1992) 774.Google Scholar
  11. 11.
    Hart, W.E., Ph.D. Thesis, University of California, San Diego, CA, at ‘’.Google Scholar
  12. 12.
    MaillotP.-G., In GlassnerA.S. (Ed.) Graphics Gems, Academic Press, New York, NY, 1990, pp. 498–515.Google Scholar
  13. 13.
    WattA. and WattM., Advanced Animation and Rendering Techniques — Theory and Practice, ACM Press, New York, NY, and Addison-Wesley Publishing Company, Wokingham, U.K., 1992.Google Scholar
  14. 14.
    PattabiramanN., LevittM., FerrinT.E. and LangridgeR., J. Comput. Chem., 6 (1985) 432.Google Scholar
  15. 15.
    GoodfordP.J., J. Med. Chem., 28 (1985) 849.Google Scholar
  16. 16.
    WeinerS.J., KollmanP.A., CaseD.A., SinghU.C., GhioC., AlagonaG., ProfetaJr.S. and WeinerP., J. Am. Chem. Soc., 106 (1984) 765.Google Scholar
  17. 17.
    Van derWaalsJ.H., Lehrbuch der Thermodynamik, Part 1, Mass and Van Suchtelen, Leipzig, Germany, 1908.Google Scholar
  18. 18.
    BashfordD. and GerwertK., J. Mol. Biol., 224 (1992) 473.Google Scholar
  19. 19.
    BashfordD. and KarplusM., Biochemistry, 29 (1990) 10219.Google Scholar
  20. 20.
    GilsonM.K. and HonigB., Nature, 330 (1987) 84.Google Scholar
  21. 21.
    HonigB. and NichollsA., Science, 268 (1995) 1144.Google Scholar
  22. 22.
    MehlerE.L. and SolmajerT., Protein Eng., 4 (1991) 903.Google Scholar
  23. 23.
    MarquartM., WalterJ., DeisenhoferJ., BodeW. and HuberR., Acta Crystallogr., Sect. B, 39 (1983) 480.Google Scholar
  24. 24.
    PoulosT.L., FinzelB.C. and HowardA.J., J. Mol. Biol., 195 (1987) 687.Google Scholar
  25. 25.
    PadlanE.A., CohenG.H. and DaviesD.R., Ann. Immunol. (Paris), Sect. C, 136 (1985) 271.Google Scholar
  26. 26.
    WeberP.C., OhlendorfD.H., WendolskiJ.J. and SalemmeF.R., Science, 243 (1989) 85.Google Scholar
  27. 27.
    LamP.Y.S., JadhavP.K., EyermanC.J., HodgeC.N., RuY., BachelerL.T., MeekJ.L., OttoM.J., RaynerM.M., WongY., ChangC.-H., WeberP.C., JacksonD.A., SharpeT.R. and Erickson-ViitanenS., Science, 263 (1994) 380.Google Scholar
  28. 28.
    WeisW.I., BruengerA.T., SkehelJ.J. and WileyD.C., J. Mol. Biol., 212 (1990) 737.Google Scholar
  29. 29.
    McDonaldI.K. and ThorntonJ.M., J. Mol. Biol., 239 (1994) 777.Google Scholar
  30. 30.
    LeachA.R., ProutC.K. and DolataD.P., J. Comput.-Aided Mol. Design, 4 (1990) 271.Google Scholar
  31. 31.
    FriedmanA.R., RobertsV.A. and TainerJ.A., Proteins Struct. Funct. Genet., 20 (1994) 15.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Garrett M. Morris
    • 1
  • David S. Goodsell
    • 1
  • Ruth Huey
    • 1
  • Arthur J. Olson
    • 1
  1. 1.Department of Molecular Biology, MB-5The Scripps Research InstituteLa JollaU.S.A.

Personalised recommendations