Journal of Computer-Aided Molecular Design

, Volume 10, Issue 5, pp 372–396

Computational combinatorial ligand design: Application to human α-thrombin

  • Amedeo Caflisch
Research Papers

Summary

A new method is presented for computer-aided ligand design by combinatorial selection of fragments that bind favorably to a macromolecular target of known three-dimensional structure. Firstly, the multiple-copy simultaneous-search procedure (MCSS) is used to exhaustively search for optimal positions and orientations of functional groups on the surface of the macromolecule (enzyme or receptor fragment). The MCSS minima are then sorted according to an approximated binding free energy, whose solvation component is expressed as a sum of separate electrostatic and nonpolar contributions. The electrostatic solvation energy is calculated by the numerical solution of the linearized Poisson-Boltzmann equation, while the nonpolar contribution to the binding free energy is assumed to be proportional to the loss in solvent-accessible surface area. The program developed for computational combinatorial ligand design (CCLD) allows the fast and automatic generation of a multitude of highly diverse compounds, by connecting in a combinatorial fashion the functional groups in their minimized positions. The fragments are linked as two atoms may be either fused, or connected by a covalent bond or a small linker unit. To avoid the combinatorial explosion problem, pruning of the growing ligand is performed according to the average value of the approximated binding free energy of its fragments. The method is illustrated here by constructing candidate ligands for the active site of human α-thrombin. The MCSS minima with favorable binding free energy reproduce the interaction patterns of known inhibitors. Starting from these fragments, CCLD generates a set of compounds that are closely related to high-affinity thrombin inhibitors. In addition, putative ligands with novel binding motifs are suggested. Probable implications of the MCSS-CCLD approach for the evolving scenario of drug discovery are discussed.

Keywords

Structure-based drug design Thrombin Combinatorial chemistry Functional group CCLD Electrostatic screening Desolvation Finite-difference Poisson-Boltzmann technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greer J., Erickson J.W., Baldwin J.J. and Varney M.D., J. Med. Chem., 37 (1994) 1035.Google Scholar
  2. 2.
    Lam P.Y.S., Jadhav P.K., Eyermann C.J., Hodge C.N., Ru Y., Bacheler L.T., Meek J.L., Otto M.J., Rayner M.M., Wong Y.N., Chang C.H., Weber P.C., Jackson D.A., Sharpe T.R. and Erickson-Viitanen S.K., Science, 264 (1994) 380.Google Scholar
  3. 3.
    Hilpert K., Ackermann J., Banner D.W., Gast A., Gubernator K., Hadvary P., Labler L., Müller K., Schmid G., Tschopp T. and Van de Waterbeemd H., J. Med. Chem., 37 (1994) 3889.Google Scholar
  4. 4.
    Karplus M. and Petsko G.A., Nature, 347 (1990) 631.Google Scholar
  5. 5.
    Van Gunsteren W.F. and Berendsen H.J.C., Angew. Chem. Int. Ed. Engl., 29 (1990) 992.Google Scholar
  6. 6.
    Honig B. and Nicholls A., Science, 268 (1995) 1144.Google Scholar
  7. 7.
    Appelt K., Perspect. Drug Discov. Design, 1 (1993) 23.Google Scholar
  8. 8.
    Clore G.M. and Gronenborn A.M., Science, 252 (1991) 1390.Google Scholar
  9. 9.
    Fesik S.W., J. Med. Chem., 34 (1991) 2937.Google Scholar
  10. 10.
    Greer J., Proteins Struct. Funct. Genet., 7 (1990) 317.Google Scholar
  11. 11.
    Havel T.F., J. Mol. Simul., 10 (1993) 175.Google Scholar
  12. 12.
    Šali A. and Blundell T.L., J. Mol. Biol., 234 (1993) 779.Google Scholar
  13. 13.
    Caflisch A. and Karplus M., Perspect. Drug Discov. Design, 3 (1995) 51.Google Scholar
  14. 14.
    Miranker A. and Karplus M., Proteins Struct. Funct. Genet., 11 (1991) 29.Google Scholar
  15. 15.
    Stubbs M.T. and Bode W., Perspect. Drug Discov. Design, 1 (1993) 431.Google Scholar
  16. 16.
    Noble M.E.M., Verlinde C.L.M.J., Groendijk H., Kalk K.H., Wierenga R.K. and Hol W.G.J., J. Med. Chem., 34 (1991) 2709.Google Scholar
  17. 17.
    Caflisch A., Miranker A. and Karplus M., J. Med. Chem., 36 (1993) 2142.Google Scholar
  18. 18.
    Eisen M.B., Wiley D.C., Karplus M. and Hubbard R.E., Proteins Struct. Funct. Genet., 19 (1994) 199.Google Scholar
  19. 19.
    Sitkoff D., Sharp K.A. and Honig B., J. Phys. Chem., 98 (1994) 1978.Google Scholar
  20. 20.
    Warwicker J. and Watson H.C., J. Mol. Biol., 157 (1982) 671.Google Scholar
  21. 21.
    Gilson M.K. and Honig B.H., Proteins Struct. Funct. Genet., 4 (1988) 7.Google Scholar
  22. 22.
    Hermann R.B., J. Phys. Chem., 76 (1972) 2754.Google Scholar
  23. 23.
    Lee B. and Richards F.M., J. Mol. Biol., 55 (1971) 379.Google Scholar
  24. 24.
    Tapparelli C., Metternich R., Ehrhardt C. and Cook N.S., Trends Pharmacol. Sci., 14 (1993) 366.Google Scholar
  25. 25.
    Bode W., Mayr I., Baumann U., Huber R., Stone S.R. and Hofsteenge J., EMBO J., 8 (1989) 3467.Google Scholar
  26. 26.
    Banner D.W. and Hadvary P., J. Biol. Chem., 266 (1991) 20085.Google Scholar
  27. 27.
    Lyle T.A., Perspect. Drug Discov. Design, 1 (1993) 453.Google Scholar
  28. 28.
    Grootenhuis P.D.J. and Karplus M., J. Comput.-Aided Mol. Design, 10 (1996) 1.Google Scholar
  29. 29.
    Rotstein S.H. and Murcko M.A., J. Med. Chem., 36 (1993) 1700.Google Scholar
  30. 30.
    Bohacek R.S. and McMartin C., J. Am. Chem. Soc., 116 (1994) 5560.Google Scholar
  31. 31.
    Kuntz I.D., Science, 257 (1992) 1078.Google Scholar
  32. 32.
    Kettner C. and Shaw E., Thromb. Res., 14 (1979) 969.Google Scholar
  33. 33.
    Brünger A. and Karplus M., Proteins Struct. Funct. Genet., 4 (1988) 148.Google Scholar
  34. 34.
    Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S. and Karplus M., J. Comput. Chem., 4 (1983) 187.Google Scholar
  35. 35.
    Elber R. and Karplus M., J. Am. Chem. Soc., 112 (1990) 9161.Google Scholar
  36. 36.
    Dirac P.A.M., Proc. Cambridge Phil. Soc., 26 (1930) 376.Google Scholar
  37. 37.
    Hestenes M.R. and Stiefel E., J. Res. N.B.S., 49 (1952) 409.Google Scholar
  38. 38.
    Bashford D. and Karplus M., Biochemistry, 29 (1990) 10219.Google Scholar
  39. 39.
    Davis M.E., Madura J.D., Luty B.A. and McCammon J.A., Comput. Phys. Commun., 62 (1991) 187.Google Scholar
  40. 40.
    Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P., Numerical Recipes in Fortran, Cambridge University Press, Cambridge, U.K., 1992.Google Scholar
  41. 41.
    Davis M.E. and McCammon J.A., J. Comput. Chem., 10 (1989) 386.Google Scholar
  42. 42.
    Davis M.E. and McCammon J.A., J. Comput. Chem., 11 (1990) 401.Google Scholar
  43. 43.
    Davis M.E. and McCammon J.A., J. Comput. Chem., 12 (1991) 909.Google Scholar
  44. 44.
    Lim C., Bashford D. and Karplus M., J. Phys. Chem., 95 (1991) 5610.Google Scholar
  45. 45.
    Edmonds D.T., Rogers N.K. and Sternberg M.J.E., Mol. Phys., 52 (1984) 1487.Google Scholar
  46. 46.
    Mohan V., Davis M.E., McCammon J.A. and Pettitt B.M., J. Phys. Chem., 96 (1992) 6428.Google Scholar
  47. 47.
    Gilson M.K., Sharp K.A. and Honig B.H., J. Comput. Chem., 9 (1988) 327.Google Scholar
  48. 48.
    Luty B.A., Davis M.E. and McCammon J.A., J. Comput. Chem., 13 (1992) 768.Google Scholar
  49. 49.
    Still W.C., Tempczyk A., Hawley R.C. and Hendrickson T., J. Am. Chem. Soc., 112 (1990) 6127.Google Scholar
  50. 50.
    Chothia C., Nature, 248 (1974) 338.Google Scholar
  51. 51.
    Cabani S., Gianni P., Mollica V. and Lepori L., J. Solution Chem., 10 (1981) 563.Google Scholar
  52. 52.
    Maryanoff B.E., Qiu X., Padmanabhan K.P., Tulinsky A., AlmondJr. H.R., Andrade-Gordon P., Greco M.N., Kauffman J.A., Nicolaou K.C., Liu A., Brungs P. and Fusetani N., Proc. Natl. Acad. Sci. USA, 90 (1993) 8048.Google Scholar
  53. 53.
    Weber P.C., Lee S.L., Lewandowski F.A., Schadt M.C., Chang C.H. and Kettner C.A., Biochemistry, 34 (1995) 3750.Google Scholar
  54. 54.
    Tabernero L., Chang C.Y., Ohringer S., Lau W.F., Iwanowicz E.J., Han W.C., Wang T.C., Seiler S.M., Roberts D.G.M. and Sack J.S., J. Mol. Biol., 246 (1995) 14.Google Scholar
  55. 55.
    Gubernator K., Broger C., Bur D., Doran D.M., Gerber P.R., Müller K. and Schaumann T.M., In Hermann E.C. and Franke R. (Eds.) Computer-Aided Drug Design in Industrial Research, Springer, Berlin, Germany, 1995, pp. 61–77.Google Scholar
  56. 56.
    Gerber P.R. and Müller K., J. Comput.-Aided Mol. Design, 9 (1995) 251.Google Scholar
  57. 57.
    Obst U., Gramlich V., Diederich F., Weber L. and Banner D.W., Angew. Chem., 107 (1995) 1874.Google Scholar
  58. 58.
    Rydel T.J., Tulinsky A., Bode W. and Huber R., J. Mol. Biol., 221 (1991) 583.Google Scholar
  59. 59.
    Müller K., In Schwartz T.W., Hjorth S.A. and Sandholm Kastrup J., (Eds.) Structure and Function of 7TM Receptors, Munksgaard, Copenhagen, Denmark, 1996, pp. 414–421.Google Scholar
  60. 60.
    Gallop M.A., Barrett R.W., Dower W.J., Fodor S.P.A. and Gordon E.M., J. Med. Chem., 37 (1994) 1233.Google Scholar
  61. 61.
    Gordon E.M., Barrett R.W., Dower W.J., Fodor S.P.A. and Gallop M.A., J. Med. Chem., 37 (1994) 1385.Google Scholar
  62. 62.
    Weber L., Wallbaum S., Broger C. and Gubernator K., Angew. Chem. Int. Ed. Engl., 34 (1995) 2280.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1996

Authors and Affiliations

  • Amedeo Caflisch
    • 1
  1. 1.Department of BiochemistryUniversity of ZürchZürichSwitzerland

Personalised recommendations