Journal of Computer-Aided Molecular Design

, Volume 9, Issue 6, pp 521–531

Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

  • C. S. Poornima
  • P. M. Dean
Research Papers


Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of ‘binding sites’ by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2–4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.


Conserved water molecules Drug design Homologous proteins Protein-ligand complex Micro-grooves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edsall, J. and McKenzie, H.A., Adv. Biophys., 16 (1983) 53.Google Scholar
  2. 2.
    Blake, C.C.F., Pulford, W.C.A. and Artymiuk, P.J., J. Mol. Biol., 167 (1983) 693.Google Scholar
  3. 3.
    Sreenivasan, U. and Axelsen, P.H., Biochemistry, 31 (1992) 12785.Google Scholar
  4. 4.
    Rashin, A.A., Iofin, M. and Honig, B., Biochemistry, 25 (1986) 3619.Google Scholar
  5. 5.
    Loris, R., Stas, P.P.G. and Wyns, L., J. Biol. Chem., 269 (1994) 26722.Google Scholar
  6. 6.
    Thanki, N., Umrania, Y., Thornton, J.M. and Goodfellow, J.M., J. Mol. Biol., 224 (1991) 669.Google Scholar
  7. 7.
    Finney, J.L., Phil. Trans. R. Soc. London Ser. B, 278 (1977) 3.Google Scholar
  8. 8.
    Vyas, N.K., Vyas, M.N. and Quiocho, F.A., Science, 242 (1988) 1290.Google Scholar
  9. 9.
    Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 500.Google Scholar
  10. 10.
    Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 513.Google Scholar
  11. 11.
    Dean, P.M., Barakat, M.T. and Todorov, N.P., In Dean, P.M., Jolles, G. and Newton, C.G. (Eds.) New Perspectives in Drug Design, Academic Press, London, 1995, pp. 155–183.Google Scholar
  12. 12.
    LaLonde, J.M., Bernlohr, D.H. and Banaszak, L.J., Biochemistry, 33 (1994) 4885.Google Scholar
  13. 13.
    Zhang, X.-J. and Matthews, B.W., Protein Sci., 3 (1994) 1031.Google Scholar
  14. 14.
    Mittl, P.R.E. and Schulz, G.E., Protein Sci., 3 (1994) 799.Google Scholar
  15. 15.
    Karplus, P.A. and Schulz, G.E., J. Mol. Biol., 210 (1989) 163.Google Scholar
  16. 16.
    Zou, J.-Y., Flocco, M.M. and Mowbray, S.L., J. Mol. Biol., 233 (1993) 739.Google Scholar
  17. 17.
    Karpusas, M., Holland, D. and Remington, S.J., Biochemistry, 30 (1991) 6024.Google Scholar
  18. 18.
    Remington, S.J., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.Google Scholar
  19. 19.
    Dunn, C.R. and Holbrook, J.J., Phil. Trans. R. Soc. London Ser. B, 332 (1991) 177.Google Scholar
  20. 20.
    Abad-Zapatero, C., Griffith, J.P., Sussman, J.L. and Rossmann, M.G., J. Mol. Biol., 198 (1987) 445.Google Scholar
  21. 21.
    Ji, X., Armstrong, R.N. and Gilliland, G.L., Biochemistry, 32 (1993) 12949.Google Scholar
  22. 22.
    Raghunathan, S., Chandross, R.J., Kretsinger, H.R., Allison, T.J., Penington, C.J. and Rule, G.S., J. Mol. Biol., 338 (1994) 815.Google Scholar
  23. 23.
    Connolly, M.L., Science, 221 (1983) 709.Google Scholar
  24. 24.
    Hubbard, S.J., Gross, K.-H. and Argos, P., Protein Eng., 7 (1994) 613.Google Scholar
  25. 25.
    Hubbard, S.J. and Argos, P., Protein Sci., 3 (1995) 2194.Google Scholar
  26. 26.
    Kuhn, L.A., Siani, M.A., Pique, M.E., Fisher, C.L., Getzoff, E.D. and Trainer, J.A., J. Mol. Biol., 228 (1992) 13.Google Scholar
  27. 27.
    Finer-Moore, J.S., Kossiakoff, A.A., Hurley, J.H., Earnest, T. and Stoud, R.M., Proteins, 12 (1992) 203.Google Scholar
  28. 28.
    Kossiakoff, A.A., Sintchak, M.D., Shpungin, J. and Presta, L.G., Proteins, 12 (1992) 223.Google Scholar
  29. 29.
    Williams, M.A., Goodfellow, J.M. and Thornton, J., Protein Sci., 3 (1994) 1224.Google Scholar
  30. 30.
    Meiering, E.M. and Wagner, G., J. Mol. Biol., 247 (1995) 294.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • C. S. Poornima
    • 1
  • P. M. Dean
    • 1
  1. 1.Drug Design Group, Department of PharmacologyUniversity of CambridgeCambridgeU.K.

Personalised recommendations