Journal of Computer-Aided Molecular Design

, Volume 8, Issue 6, pp 695–708 | Cite as

Local elevation: A method for improving the searching properties of molecular dynamics simulation

  • Thomas Huber
  • Andrew E. Torda
  • Wilfred F. van Gunsteren
Research Papers


The concept of memory has been introduced into a molecular dynamics algorithm. This was done so as to persuade a molecular system to visit new areas of conformational space rather than be confined to a small number of low-energy regions. The method is demonstrated on a simple model system and the 11-residue cyclic peptide cyclosporin A. For comparison, calculations were also performed using simulated temperature annealing and a potential energy annealing scheme. Although the method can only be applied to systems with a small number of degrees of freedom, it offers the chance to generate a multitude of different low-energy structures, where other methods only give a single one or few. This is clearly important in problems such as drug design, where one is interested in the conformational spread of a system.

Key words

Conformational search Computer simulation Molecular dynamics Cyclosporin A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ScheragaH.A., In VanGunsterenW.F., WeinerR.K. and WilkinsonA.J. (Eds.) Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Vol. 2, ESCOM, Leiden, 1993, pp. 231–248.Google Scholar
  2. 2.
    KirkpatrickS., GelattJr.C.D. and VecchiM.P., Science, 220 (1983) 671.Google Scholar
  3. 3.
    VanSehaikR.C., VanGunsterenW.F. and BerendsenH.J.C., J. Comput.-Aided Mol. Design, 6 (1992) 97.Google Scholar
  4. 4.
    VanSchaikR.C., BerendsenH.J.C., TordaA.E. and VanGunsterenW.F., J. Mol. Biol., 234 (1993) 751.Google Scholar
  5. 5.
    CrippenG.M., J. Comput. Chem., 3 (1982) 471.Google Scholar
  6. 6.
    CrippenG.M., J. Comput. Chem., 10 (1989) 896.Google Scholar
  7. 7.
    CrippenG.M. and HavelT.F., J. Chem. Inf. Comput. Sci., 30 (1990) 222.Google Scholar
  8. 8.
    PurisimaE.O. and ScherageH.A., Proc. Natl. Acad. Sci. USA 83 (1986) 2782.Google Scholar
  9. 9.
    BeusenD.D. and MarshallG.R., In JardetzkyO. (Ed.) Protein Structure and Engineering, Vol. 183, Plenum Press, New York, NY, 1989, pp. 97–109.Google Scholar
  10. 10.
    GloverF., ORSA J. Comput., 1 (1989) 190.Google Scholar
  11. 11.
    GloverF., ORSA J. Comput., 2 (1990) 4.Google Scholar
  12. 12.
    VanGunsterenW.F. and BerendsenH.J.C., Mol. Simul., 1 (1988) 173.Google Scholar
  13. 13.
    RyekaertJ.-P., CiceottiG. and BerendsenH.J.C., J. Comput. Phys.,23 (1977) 327.Google Scholar
  14. 14.
    BerendsenH.J.C., PostmaJ.P.M., VanGunsterenW.F., DiNolaA. and HaakJ.R., J. Chem. Phys., 81 (1984) 3687.Google Scholar
  15. 15.
    VanGunsterenW.F. and BerendsenH.J.C., GROMOS Library Manual, Biomos, Groningen, 1987.Google Scholar
  16. 16.
    LautzJ., KesslerH., KapteinR. and VanGunsterenW.F., J. Comput.-Alded Mol. Design, 1 (1987) 219.Google Scholar
  17. 17.
    BrunneR.M., VanGunsterenW.F., BrüschweilerR. and ErnstR.R., J. Am. Chem. Soc., 115 (1993) 4764.Google Scholar
  18. 18.
    HavelT.F., Biopolymers, 29 (1990) 1565.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1994

Authors and Affiliations

  • Thomas Huber
    • 1
  • Andrew E. Torda
    • 1
  • Wilfred F. van Gunsteren
    • 1
  1. 1.Physical ChemistryETH ZentrumZürichSwitzerland

Personalised recommendations