Genetica

, Volume 61, Issue 3, pp 161–164 | Cite as

Adaptive nature of chromosomal rearrangement: differential fitness in pocket gophers

  • R. J. Baker
  • R. K. Chesser
  • B. F. Koop
  • R. A. Hoyt
Article

Abstract

A chromosomal centric fusion polymorphism in populations of the plains pocket gopher, Geomys bursarius, was studied to determine the relative fitness associated with the karyotypic phenotypes. There was a greater number of heterozygous individuals than expected χ12=8.58, P=0.001. Calculations indicate that the viabilities of the two chromosomal homozygotes were only 35 and 76 percent or that of the heterozygote. Differences in fitness values for the chromosomal morphs for Geomys strongly emphasize the possible adaptive nature of the karyotype and provides a primary mechanism for chromosomal evolution, even in species composed of demes of relatively large size. This is the first case of positive chromosomal heterosis in vertebrates. The plains pocket gopher can now be added to the few empirically documented samples of balanced polymorphism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atchley, W. R. & Woodruff, D. S., 1981. Eds. Evolution and speciation. Cambridge Univ. Press, New York. pp. 1–424.Google Scholar
  2. Baker, R. J., 1967. Karyotypes of bats of the family Phyllostomidae and their taxonomic implications. Southwestern Nat. 12: 407–428.Google Scholar
  3. Bengtsson, B. O. & Bodmer, W. F., 1976. On the increase of chromosome mutations under random mating. Theor. Popul. Biol. 9: 260–281.Google Scholar
  4. Bickham, J. W. & Baker, R. J., 1979. Canalization model of chromosomal evolution. p. 70–84. In: Models and methodologies in evolutionary theory (J. H. Swartz & H. G. Rollins, eds). Bull. Carnegie Mus. Nat. Hist. 13: 105 pp.Google Scholar
  5. Bush, G., 1981. Stasipatric speciation and rapid evolution in animals. p. 201–218. In: Evolution and speciation (W. R. Atchley & D. S. Woodruff, eds). Cambridge Univ. Press, N. Y., 424 pp.Google Scholar
  6. Bush, G. L., Case, S. M., Wilson, A. C. & Patton, J. L., 1977. Rapid speciation and chromosomal evolution in mammals. Proc. natn. Acad. Sci. U.S.A. 74: 3942–3946.Google Scholar
  7. Dobzhansky, T. H., 1970. Genetics of the evolutionary process. Columbia Univ. Press, N. Y.Google Scholar
  8. John, B., 1981. Chromosome change and evolutionary change: a critique. In: Evolution and speciation, (W. R. Atchley & Woodruff, D. S. eds). Cambridge Univ. Press, N. Y., 424 pp.Google Scholar
  9. John, B. & Lewis, K. R., 1957. Studies on Periplaneta americana. I. Experimental analysis of male meiosis. Heredity 11: 1–9.Google Scholar
  10. John, B. & Lewis, K. R., 1958. Studies on Periplaneta americana. III. Selection for heterozygosity. Heredity 12: 185–197.Google Scholar
  11. John, B. & Lewis, K. R., 1959. Selection for interchange heterozygosity in an inbred culture of Blaberus discoidalis (Serville). Genetics 44: 251–267.Google Scholar
  12. Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.Google Scholar
  13. Lewis, K. R. & John, B., 1957. Studies on Periplaneta americana. II. Interchange heterozygosity in isolated populations. Heredity 11: 11–22.Google Scholar
  14. Lewontin, R. C., 1974. The genetic base of evolutionary change. Columbia Univ. Press, N. Y.Google Scholar
  15. Patton, J. C., Baker, R. J. & Genoways, H. H., 1980. Apparent chromosomal heterosis in a fossorial mammal. Am. Nat. 116: 143–146.Google Scholar
  16. Penney, D. F. & Zimmerman, F. G., 1976. Genic divergence and local population differentiation by random drift in the pocket gopher genus Geomys. Evolution 30: 473–483.Google Scholar
  17. Sclander, R. K., Kaufman, D. W., Baker, R. J. & Williams, S. L., 1974. Genic and chromosomal differentiation in pocket gophers of the Geomys bursarius group. Evolution 28: 557–564.Google Scholar
  18. Templeton, A. R., 1980. Modes of speciation and inferences based on genetic distances. Evolution 34: 719–729.Google Scholar
  19. Templeton, A. R., 1981. Evolutionary change. Science 214: 900.Google Scholar
  20. Vosselman, L. & Van Heemert, C., 1980. Meiotic disjunction and embryonic lethality in sex-linked double-translocation heterozygous males of the onion fly, Hylemya antiqua (Meigen) Theor. appl. Genet. 58: 161–167.Google Scholar
  21. White, M. J. D., 1978. Modes of speciation. Freeman, San Francisco. 455 pp.Google Scholar
  22. Wilson, A. C., Bush, G. L., Case, S. M. & King, M. C., 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. natn. Acad. Sci. U.S.A. 72: 5061–5065.Google Scholar
  23. Wilson, E. O. & Bossert, W. H., 1971. A primer of population biology. Sinauer, Stanford, Conn., pp. 52.Google Scholar
  24. Zimmerman, E. G. & Gayden, N. A., 1981. Analysis of genic heterogeneity among local populations of the pocket gopher, Geomys bursarius. In: Mammalian population genetics (M. H. Smith & J. Joule, eds), Univ. of Georgia Press, Athens. 380 pp.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • R. J. Baker
    • 1
  • R. K. Chesser
    • 1
  • B. F. Koop
    • 1
  • R. A. Hoyt
    • 1
  1. 1.The Museum and Department of Biological SciencesTexas Tech UniversityLubbockUSA

Personalised recommendations