Advertisement

Journal of Computer-Aided Molecular Design

, Volume 8, Issue 5, pp 583–606 | Cite as

A fast and efficient method to generate biologically relevant conformations

  • Gerhard Klebe
  • Thomas Mietzner
Research Papers

Summary

Mutual binding between a ligand of low molecular weight and its macromolecular receptor demands structural complementarity of both species at the recognition site. To predict binding properties of new molecules before synthesis, information about possible conformations of drug molecules at the active site is required, especially if the 3D structure of the receptor is not known. The statistical analysis of small-molecule crystal data allows one to elucidate conformational preferences of molecular fragments and accordingly to compile libraries of putative ligand conformations. A comparison of geometries adopted by corresponding fragments in ligands bound to proteins shows similar distributions in conformation space. We have developed an automatic procedure that generates different conformers of a given ligand. The entire molecule is decomposed into its individual ring and open-chain torsional fragments, each used in a variety of favorable conformations. The latter ones are produced according to the library information about conformational preferences. During this building process, an extensive energy ranking is applied. Conformers ranked as energetically favorable are subjected to an optimization in torsion angle space. During minimization, unfavorable van der Waals interactions are removed while keeping the open-chain torsion angles as close as possible to the experimentally most frequently observed values. In order to assess how well the generated conformers map conformation space, a comparison with experimental data has been performed. This comparison gives some confidence in the efficiency and completeness of this approach. For some ligands that had been structurally characterized by protein crystallography, the program was used to generate sets of some 10 to 100 conformers. Among these, geometries are found that fall convincingly close to the conformations actually adopted by these ligands at the binding site.

Key words

Conformational analysis of drug molecules Biologically relevant conformations Conformational preferences from crystal structures Computer program Comparison with protein-bound conformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bürgi, H.B. and Dunitz, J.D., Structure Correlation, Vol. 1 and 2, VCH, Weinheim, 1994.Google Scholar
  2. 2.
    Klebe, G., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 2, VCH, Weinheim, 1994, pp. 543–603.Google Scholar
  3. 3.
    Ricketts, E.M., Bradshaw, J., Hann, M., Hayes, F., Tanna, N. and Ricketts, D.M., J. Chem. Inf. Comput. Sci., 33 (1993) 905.Google Scholar
  4. 4.
    Pearlman, R.S., CDA News, 2 (1987) 1.Google Scholar
  5. 5.
    Gasteiger, J., Rudolph, C. and Sadowski, J., Tetrahedron Comput. Methodol., 3 (1990) 537.Google Scholar
  6. 6.
    DeClerq, P.J., Hoflack, J. and Cauwbergh, S., QCPE Program No. QCMP079, Bloomington, IN.Google Scholar
  7. 7.
    Allen, F.H. and Kennard, O., Acc. Chem. Res., 16 (1983) 146.Google Scholar
  8. 8.
    Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G. and Taylor, R., J. Chem. Soc., Perkin Trans. II, (1987) S1.Google Scholar
  9. 9.
    Bürgi, H.B. and Dunitz, J.D., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 1, VCH, Weinheim, 1994, pp. 23–70.Google Scholar
  10. 10.
    SYBYL Molecular Modeling System (Version 5.40), Tripos Associates, St. Louis, MO.Google Scholar
  11. 11.
    On request, the supplementary material can be made available through electronic mail provided an appropriate e-mail address is delivered.Google Scholar
  12. 12.
    Beck, H. and Egert, E., force-field program MOMO, University of GöttingenGöttingen, 1988.Google Scholar
  13. 13.
    Smith, A.E. and Lindner, H., J. Comput.-Aided Mol. Design, 5 (1991) 235.Google Scholar
  14. 14.
    Davidon, W.C., Math. Programming, 9 (1975) 1.Google Scholar
  15. 15.
    Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.Google Scholar
  16. 16.
    Murray-Rust, P., In Griffin, J.F. and Duax, W.L. (Eds.) Molecular Structure and Biological Activity, Elsevier, New York, NY, 1982, pp. 117–133.Google Scholar
  17. 17.
    Dougherty, R.L., Edelman, A. and Hyman, J.M., Math. Comput., 52 (1989) 471.Google Scholar
  18. 18.
    Bürgi, H.B. and Dunitz, J.D., Acc. Chem. Res. 16 (1983) 153.Google Scholar
  19. 19.
    Bürgi, H.B. and Dunitz, J.D., Acta Crystallogr., B44 (1988) 445.Google Scholar
  20. 20.
    Maverick, E., Mirsky, K., Knobler, C.B. and Trueblood, K.N., Acta Crystallogr., B47 (1991) 272.Google Scholar
  21. 21.
    Klebe, G., In Jeffrey, G.A. and Piniella, J.F. (Eds.) The Application of Charge Density Research to Chemistry and Drug Design, Plenum, New York, NY, 1991, pp. 287–318.Google Scholar
  22. 22.
    Saenger, W., Angew. Chem., 85 (1973) 680; Angew. Chem., Int. Ed. Engl., 12 (1973) 591.Google Scholar
  23. 23.
    Schweizer, B., In Bürgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, Vol. 1, VCH, Weinheim, 1994, pp. 369–404.Google Scholar
  24. 24.
    Klebe, G., J. Struct. Chem. (THEOCHEM), 308, (1994) 53.Google Scholar
  25. 25.
    Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.Google Scholar
  26. 26.
    Clark, M., CramerIII, R.D. and Van Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.Google Scholar
  27. 27.
    Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins, 4 (1988) 31.Google Scholar
  28. 28.
    Remington, S., Wiegand, G. and Huber, R., J. Mol. Biol., 158 (1982) 111.Google Scholar
  29. 29.
    Sauter, N.K., Glick, G.D., Crowther, R.L., Park, S.J., Eisen, M.B., Skehel, J.J., Knowles, J.R. and Wiley, D.C., Proc. Natl. Acad. Sci. USA, 89 (1992) 324.Google Scholar
  30. 30.
    Christianson, D.W. and Lipscomb, W.N., Proc. Natl. Acad. Sci. USA, 83 (1986) 7568.Google Scholar
  31. 31.
    Brandstetter, H., Turk, D., Hoeffken, H.W., Grosse, D., Stürzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.Google Scholar
  32. 32.
    Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.Google Scholar
  33. 33.
    Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.Google Scholar
  34. 34.
    Monzingo, A.F. and Matthews, B.W., Biochemistry, 23 (1984) 5724.Google Scholar
  35. 35.
    Kester, W.R. and Matthews, B.W., Biochemistry, 16 (1977) 2506.Google Scholar
  36. 36.
    Marshall, G.R., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 80–116.Google Scholar
  37. 37.
    Leach, A.R., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry II, VCH, New York, NY, 1991, pp. 1–55.Google Scholar
  38. 38.
    Hagler, A.T., Osguthorpe, D.J., Dauber-Osguthorpe, P. and Hemple, J.C., Science, 227 (1985) 1309.Google Scholar
  39. 39.
    Ferguson, D.M. and Raber, D.J., J. Am. Chem. Soc., 111 (1989) 4371.Google Scholar
  40. 40.
    Saunders, M., J. Am. Chem. Soc., 109 (1987) 3150.Google Scholar
  41. 41.
    Crippen, G.M. and Havel, T.F., Distance Geometry and Molecular Conformation, Research Studies Press, Wiley, New York, NY, 1988.Google Scholar
  42. 42.
    Saunders, M., Houk, K.N., Wu, Y.D., Still, W.C., Lipton, M., Chang, G. and Guida, W.C., J. Am. Chem. Soc., 112 (1990) 1419.Google Scholar
  43. 43.
    Böhm, H.J., Klebe, G., Lorenz, T., Mietzner, T. and Siggel, L., J. Comput. Chem., 11 (1990) 1021.Google Scholar
  44. 44.
    Marshall, G., Annu. Rev. Pharmacol. Toxicol., 27 (1987) 193.Google Scholar
  45. 45.
    Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.D. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.) Computer-Assisted Drug Design, Vol. 112, American Chemical Society, Washington, DC, 1979, pp. 205–226.Google Scholar
  46. 46.
    Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J. Comput.-Aided Mol. Design, 1 (1987) 3.Google Scholar
  47. 47.
    Van Drie, J.H., Weininger, D. and Martin, Y.C., J. Comput.-Aided Mol. Design, 3 (1989) 225.Google Scholar
  48. 48.
    Davies, K. and Upton, R., Tetrahedron Comput. Methodol., 3 (1990) 665.Google Scholar
  49. 49.
    Dolata, D.P. and Carter, R.E., J. Chem. Inf. Comput. Sci., 27 (1987) 36.Google Scholar
  50. 50.
    Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.Google Scholar
  51. 51.
    Leach, A.R., Prout, K. and Dolata, D.P., J. Comput.-Aided Mol. Design, 2 (1988) 107.Google Scholar
  52. 52.
    Leach, A.R. and Prout, K., J. Comput. Chem., 11 (1990) 1193.Google Scholar
  53. 53.
    Wipke, W.T. and Hahn, M.A., Tetrahedron Comput. Methodol., 1 (1988) 141.Google Scholar
  54. 54.
    As an example: on a Silicon Graphics Indigo RS4000 the average time to generate a conformer of NAPAP (Fig. 14) was 3.2 s; for the smaller inhibitor 4-TAPAP (Fig. 15) 1.8 s per conformer were required.Google Scholar
  55. 55.
    Hahn, M. and Wipke, W.T., Tetrahedron Comput. Methodol., 1 (1988) 81.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1994

Authors and Affiliations

  • Gerhard Klebe
    • 1
  • Thomas Mietzner
    • 1
  1. 1.Main LaboratoryBASF AGLudwigshafenGermany

Personalised recommendations