Boundary-Layer Meteorology

, Volume 33, Issue 2, pp 113–133 | Cite as

Application of the E-ε turbulence model to the atmospheric boundary layer

  • H. W. Detering
  • D. Etling


In the so called E - ε turbulence model, an eddy viscosity is evaluated from turbulent kinetic energy E and energy dissipation ε. Although still a first-order closure method in its simpler form, the E- ε model yields eddy viscosity for complex turbulent flows without a prior prescription of a length scale needed in so-called mixing-length models. The E - ε model has been successfully applied to many flow problems in engineering applications for non-rotating boundary layers. In this paper, the E - ε method is extended to the atmospheric boundary layer for which a modification of the dissipation equation is found to be necessary in order to give results comparable with observational data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aupoix, B., Cousteix, J., and Liandrat, J.: 1983, ‘Effects of Rotation on Isotropic Turbulence’, Proceedings of Fouth Conference on Turbulent Shear Flows, 1983, Karlsruhe, F.R.G.Google Scholar
  2. Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulence Exchange in an Neutral Atmosphere’, J. Geophys. Res. 67, 3095–3102.Google Scholar
  3. Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers’, J. Atmos. Sci. 25, 1015–1020.Google Scholar
  4. Bodin, S.: 1980, ‘Applied Numerical Modeling of the Atmospheric Boundary Layer’ in Longhetto, A.: Atmospheric Planetary Boundary Layer Physics, Elsevier Scientific Publ. Co., Amsterdam, pp. 1–76.Google Scholar
  5. Brown, R. A.: 1970, ‘A Secondary Flow Model of the Planetary Boundary Layer’, J. Atmos. Sci. 27, 742–757.Google Scholar
  6. Busch, N. E.: 1973, ‘On the Mechanics of Atmospheric Turbulence’, in Haugen, D. A. (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 1–65.Google Scholar
  7. Deaves, D. M.: 1984, ‘Application of Advanced Turbulence Models in Determining the Structure and Dispersion of Heavy Gas Clouds’, in Ooms, G. and H. Tennekes (eds.), Atmospheric Dispersion of Heavy Gases and Small Particles, Springer-Verlag, Berlin, pp. 93–103.Google Scholar
  8. Durst, F., Launder, B. E., Schmidt, F. W., and Whitelaw, J. H.: 1979, Turbulent Shear Flows I, Springer-Verlag, Berlin, 415 pp.Google Scholar
  9. Gibson, M. M. and Launder, B. E.: 1976, ‘On the Calculation of Horizontal, Turbulent Free Shear Flow under Gravitational Influence’, J. Heat Transfer, Trans. ASME 98C, 81–87.Google Scholar
  10. Hanjalic, K. and Launder, B. E.: 1972, ‘A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows’, J. Fluid Mech. 52, 609–638.Google Scholar
  11. Hasse, L.: 1978, ‘Parameterization of the Dissipation Term in Second Order Closure Modeling of the Planetary Boundary Layer Under Conditions of Forced Convection’, Beitr. Phys. Am. 51, 166–173.Google Scholar
  12. Hunt, J. C. R.: 1980, Wind over Hills, Workshop on the Planetary Boundary Layer, Amer. Meteorol. Soc., Boston, pp. 107–157.Google Scholar
  13. Launder, B. E. and Spalding, D. B.: 1972, Mathematical Models of Turbulence, Academic Press, London, 169 pp.Google Scholar
  14. Launder, B. E. and Spalding, D. B.: 1974, ‘The Numerical Computations of Turbulent Flows’, Comp. Meth. in Appl. Mech. and Eng. 3, 269–289.Google Scholar
  15. Launder, B. E., Reece, G. J., and Rodi, W.: 1975, ‘Progress in the Development of a Reynolds-Stress Turbulence Closure’, J. Fluid Mech. 68, 537–566.Google Scholar
  16. Lee, H. N.: 1979, Atmospheric Turbulence and Diffusion Boundary Layer Transport Model, Proceedings Fourth Symposium on Turbulence, Diffusion and Air Pollution, Jan. 1979, Reno, Nevada, Amer. Meteorol. Soc., Boston.Google Scholar
  17. Lee, N. H. and Kao, S. U.: 1979, ‘Finite-Element Numerical Modeling of Atmospheric Turbulent Boundary Layer’, J. Appl. Meteorol. 18, 1287–1295.Google Scholar
  18. Lettau, H. H.: 1962, ‘Theoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere’, Beitr. Phys. Atm. 35, 195–212.Google Scholar
  19. Lewellen, W. S.: 1977, ‘Use of Invariant Modeling’ in Frost, W. and T. H. Moulden (eds.), Handbook of Turbulence, Plenum Press, New York, 237–280.Google Scholar
  20. Lewellen, W. S. and Teske, M. E.: 1973, ‘Prediction of the Monin-Obukhov Similarity Functions from an Invariant Model of Turbulence’, J. Atmos. Sci. 30, 1340–1345.Google Scholar
  21. Lewellen, W. S., Teske, M. E., and Sheng, Y. P.: 1980, ‘Micrometeorological Applications of a Second-Order Closure Model of Turbulent Transport’, in Bradbury, L. J. S., F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows 2, Springer-Verlag, Berlin, pp. 366–378.Google Scholar
  22. Lumley, J. L.: 1980, ‘Second Order Modeling of Turbulent Flows’, in Kollmann, W. (ed.), Prediction Methods for Turbulent Flows, Hemisphere Publ. Co., London, pp. 1–31.Google Scholar
  23. Lumley, J. L. and Khajeh-Nouri, B.: 1974, ‘Computational Modeling of Turbulent Transport’, Adv. Geophys. 18A, 169–192.Google Scholar
  24. Marchuk, G. I., Kochergin, V. P., Klimok, V. I., and Sukhorukov, V. A.: 1977, ‘On the Dynamics of the Ocean Surface Mixed Layer’, J. Phys. Oceanogr. 7, 865–875.Google Scholar
  25. Mason, R. J. and Sykes, R. I.: 1980, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in the Neutral Atmospheric Boundary Layer’, Quart. J. R. Meteorol. Soc. 106, 351–366.Google Scholar
  26. Mellor, G. L. and Herring, H. J.: 1973, ‘A Survey of Mean Turbulent Field Closure Models’, AIAAJ. 11. 590–599.Google Scholar
  27. Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.Google Scholar
  28. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. and Space Physics 20, 851–875.Google Scholar
  29. Orlanski, J.: 1975, ‘A Rational Subdivision of Scales for Atmospheric Processes’, Bull. Amer. Meteorol. Soc. 56, 527–530.Google Scholar
  30. Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer Under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.Google Scholar
  31. Pielke, R. A.: 1984, ‘Mesoscale Meteorological Modeling’, 612 pp., Academic Press, London.Google Scholar
  32. Rodi, W.: 1980, ‘Turbulence Models for Environmental Problems’, in Kollmann, W. (ed.), Prediction Methods for Turbulent Flows, Hemisphere Publ. Co., London, pp. 259–349.Google Scholar
  33. Rodi, W.: 1980, ‘Turbulence Models and their Application in Hydraulics’, IAHR State of the Art Paper, Delft, 104 pp.Google Scholar
  34. Shir, C. C.: 1973, ‘A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer’, J. Atmos. Sci. 30, 1327–1339.Google Scholar
  35. Svensson, U.: 1979, ‘The Structure of the Turbulent Ekman Layer’, Tellus 31, 340–350.Google Scholar
  36. Svensson, U.: 1980, ‘On the Numerical Prediction of Vertical Turbulent Exchange in Stratified Flows’, in Castens, T. and T. McClimans, Second IAHR Symposium on Stratified Flows, Vol. 2, pp. 686–696, Trondheim, Norway.Google Scholar
  37. Tennekes, H.: 1973, ‘Similarity Laws and Scale Relations in Planetary Boundary Layers’, in Haugen, D. A. (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., Boston, pp. 177–216.Google Scholar
  38. Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, 293 pp.Google Scholar
  39. Therry, G. and LaCarrére, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for Planetry Boundary Layer Description’, Boundary-Layer Meteorol. 25, 63–88.Google Scholar
  40. Wipperman, F.: 1972, ‘Empirical Formulare for the Universal Functions M m(Μ) and N(Μ) in the Resistance Law for a Barotropic and Diabatic Planetary Boundary Layer’, Beitr. Phys. Atm. 45, 305–311.Google Scholar
  41. Wyngaard, J. C.: 1982, ‘Boundary-Layer Modeling’ in Nieuwstadt, F. T. M. and H. van Dop, Atmospheric Turbulence and Air Pollution Modeling, D. Reidel Publ. Co., Dordrecht, pp. 69–106.Google Scholar
  42. Wyngaard, J. C., Coté, O. R., and Rao, K. S.: 1974, ‘Modeling the Atmospheric Boundary Layer’, Adv. Geophys. 18A, 193–212.Google Scholar
  43. Yamada, T.: 1978, ‘A Three-Dimensional, Second-Order Closure Numerical Model of Mesoscale Circulations in the Lower Atmosphere: Description of the Basic Model and an Application to the Simulation of the Environmental Effects of a Large Cooling Pond’, Argonne National Laboratory, Top. Rep. ANL (RER-78-1), 67 pp.Google Scholar
  44. Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q 2l Turbulence Closure Model’, J. Atm. Sci. 40, 91–106.Google Scholar
  45. Zeman, O. and Lumley, J. L.: 1979, ‘Buoyancy Effects in Entraining Turbulent Boundary Layers: A Second-Order Closure Study’, in Durst, F., B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows I, Springer-Verlag, Berlin, pp. 295–306.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • H. W. Detering
    • 1
  • D. Etling
    • 1
  1. 1.Institut für Meteorologie und Klimatologie, Universität HannoverHannoverF.R.G.

Personalised recommendations