Advertisement

Genetica

, Volume 70, Issue 1, pp 69–79 | Cite as

Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera)

  • W. Traut
  • A. Weith
  • G. Traut
Article

Abstract

Structural mutants of the W chromosome that are kept in laboratory strains are described using light and electron microscopic techniques. The series comprises a translocation, a deficiency, fusions, and W fragments. — Conclusions drawn from the mutants are the following: At least one half of the W serves no vital function and is dispensable. Female sex determination, if the W is involved at all, rests on the other half. The amount and form of heterochromatin in somatic interphase nuclei depends on the amount and location of the W chromosome material. The W inactivation in somatic cells does not spread to attached autosomal segments.

Keywords

Somatic Cell Microscopic Technique Laboratory Strain Interphase Nucleus Vital Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, H., 1967. Die kinetische Organisation der Lepidopteren-Chromosomen. Chromosoma 22: 102–125.Google Scholar
  2. Caspari, E. W. & Gottlieb, F. J., 1975. The mediterranean meal moth Ephestia kühniella. In: King R. C. (ed.), Handbook of genetics, vol. 3, p. 125–147. Plenum Press, New York.Google Scholar
  3. Cattanach, B., 1974. Position effect variegation in the mouse. Genet. Res. 23: 291–306.Google Scholar
  4. Clarke, C., Mittwoch, U. & Traut, W., 1977. Linkage and cytogenetic studies in the swallowtail butterflies Papillo polyxenes Fab. and Papilio machaon L. and their hybrids. Proc. R. Soc. B. 198: 385–399.Google Scholar
  5. Ennis, T. J., 1976. Sex chromatin and chromosome numbers in Lepidoptera. Can. J. Genet. Cytol. 18: 119–130.Google Scholar
  6. Frizzi, G., 1948. L'eteropicnosi come indice de rinoscimento dei sessi in Bombyx mori L. Ricerca scient. 18: 119–123.Google Scholar
  7. Lindsley, D. L. & Grell, E. H., 1968. Genetic variations of Drosophila melanogaster. Carnegie Inst. Washington Publ. No. 627.Google Scholar
  8. Miller, O. L. Jr. & Bakken, A. H., 1972. Morphological studies of transeription. Karolinska Symp Res Meth reprod Endocrinology. 5th Symposium.Google Scholar
  9. Moses, M. J. & Poorman, P. A., 1981. Synaptonemal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma 81: 519–535.Google Scholar
  10. Rathjens, B., 1974. Zur Funktion des W-Chromatins bei Ephestia kuehniella (Lepidoptera). Isolierung und Charakterisierung von W-Chromatin-Mutanten. Chromosoma 47: 21–44.Google Scholar
  11. Sachs, L., 1972. Statistiche Methoden. 2. Auflage. Springer-Verlag, Heidelberg.Google Scholar
  12. Schultz, J., 1936. Variegation in Drosophila and the inert chromosome regions. Proc. natn. Acad. Sci. U.S.A. 22: 21–44.Google Scholar
  13. Schulz, H.-J. & Traut, W., 1979. The pachytene complement of the wildtype and a chromosome mutant strain of the flour moth, Ephestia kuehniella (Lepidoptera). Genetica 50: 61–66.Google Scholar
  14. Seiler, J., 1914. Das Verhalten der Geschlechtschromosomen bei Lepidopteren. Nebst einem Beitrag zur Kenntnis der Eireifung, Samenreifung und Befruchtung. Arch. Zellforsch. 13: 159–269.Google Scholar
  15. Seiler, J., 1959. Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera, Psychidae). 1. Mitteilung: Die Cytologie der bisexuellen S. triquetrella, ihr Verhalten und ihr Sexualverhältnis. Chromosoma 10: 73–114.Google Scholar
  16. Smith, S. G., 1945. Heteropycnosis as a means of diagnosing sex, J. Hered. 36: 195–196.Google Scholar
  17. Strunnikov, V., 1975. Sex control in silkworms. Nature 255: 111–113.Google Scholar
  18. Suomalainen, E., 1969. On the sex chromosome trivalent in some Lepidoptera females. Chromosoma 28: 298–308.Google Scholar
  19. Tazima, Y., 1964. The genetics of the silkworm. Academic Press, London.Google Scholar
  20. Traut, W., 1976. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma 58: 275–284.Google Scholar
  21. Traut, W., 1981. Retarded development of females, a case of maternal inheritance in a moth, Ephestia kuehniella. Genet. Res. 37: 47–53.Google Scholar
  22. Traut, W., 1986. A genetic linkage study of W-chromosome-autosome fusions, breakage, and kinetic organization of chromosomes in Eprestia (Lepidoptera). Genetica 69: 69–79.Google Scholar
  23. Traut, W. & Mosbacher, G. C., 1968. Geschlechtschromatin bei Lepidopteren. Chromosoma 25: 343–356.Google Scholar
  24. Traut, W. & Rathjens, B., 1973. Das W-Chromosom von Ephestia kuehniella (Lepidoptera) und die Ableitung des Geschlechtschromatins. Chromosoma 41: 437–446.Google Scholar
  25. Traut, W. & Scholz, D., 1978, Structure, replication and transcriptional activity of the sex-specific heterochromatin in a moth. Expl Cell Res. 113: 85–94.Google Scholar
  26. Weith, A. & Traut, W., 1980. Synaptonemal complexes with associated chromatin in a moth, Ephestia kuehniella Z. The fine structure of the W chromosomal heterochromatin. Chromosoma 78: 275–291.Google Scholar
  27. Weith, A. & Traut, W., 1986. Synaptic adjustment nonhomologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuelmiella (Insecta, Lepidoptera). Chromosoma (in press).Google Scholar

Copyright information

© Dr W. Junk Publishers 1986

Authors and Affiliations

  • W. Traut
    • 1
  • A. Weith
    • 1
  • G. Traut
    • 1
  1. 1.Institut für BiologieMedizinische Universität zu LübeckLübeck 1E R. Germany

Personalised recommendations