Boundary-Layer Meteorology

, Volume 37, Issue 1–2, pp 17–35 | Cite as

Frequency response corrections for eddy correlation systems

  • C. J. Moore


Simplified expressions describing the frequency response of eddy correlation systems due to sensor response, path-length averaging, sensor separation and signal processing are presented. A routine procedure for estimating and correcting for the frequency response loss in flux and variance measurements is discussed and illustrated by application to the Institute of Hydrology's ‘Hydra’ eddy correlation system.

The results show that flux loss from such a system is typically 5 to 10% for sensible and latent heat flux, but can be much larger for momentum flux and variance measurements in certain conditions.

A microcomputer program is included which, with little modification, can be used for estimating flux loss from other eddy correlation systems with different or additional sensors.


Heat Flux Signal Processing Latent Heat Response Correction Frequency Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E. L.: 1981, ‘The Effects of Volume Averaging on Spectra Measured with a Lyman-Alpha Hygrometer’, J. Appl. Meteorol. 20, 467–475.Google Scholar
  2. Campbell, G. S. and Unsworth, M. H.: 1979, ‘An Inexpensive Sonic Anemometer for Eddy Correlation’, Boundary-Layer Meteorol. 18, 1072–1077.Google Scholar
  3. Claussen, M.: 1985, ‘A Model of Turbulence Spectra in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 33, 151–172.Google Scholar
  4. Coppin, P. A. and Taylor, K. J.: 1983, ‘A Three-Component Sonic Anemometer/Thermometer System for General Micrometeorological Research’, Boundary-Layer Meteorol. 27, 27–42.Google Scholar
  5. Duchon, C. E.: 1963, ‘The Infrared Radiation Temperature Correction for Spherical Temperature Sensors’, J. Appl. Meteorol. 2, 298–305.Google Scholar
  6. Duchon, C. E.: 1964, ‘Estimates of the Infrared Radiation Temperature Correction for Cylindrical Temperature Sensors’, J. Appl. Meteorol. 3, 327–335.Google Scholar
  7. Garratt, J. R.: 1975, ‘Limitations of the Eddy-Correlation Technique for the Determination of Turbulent Fluxes Near the Surface’, Boundary-Layer Meteorol. 8, 255–259.Google Scholar
  8. Gurvich, A. S.: 1962, ‘The Pulsation Spectra of the Vertical Component of Wind Velocity and Their Relations to the Micrometeorological Conditions’, Izv. Atmos. Oceanic Phys. 4, 101–136.Google Scholar
  9. Hicks, B. B.: 1970, ‘The Measurement of Atmospheric Fluxes Near the Surface: A Generalized Approach’, J. Appl. Meteorol. 9, 386–388.Google Scholar
  10. Hicks, B. B.: 1972, ‘Propellor Anemometers as Sensors of Atmospheric Turbulence’, Boundary-Layer Meteorol. 3, 214–228.Google Scholar
  11. Højstrup, J.: 1981, ‘A Simple Model for the Adjustment of Velocity Spectra in Unstable Conditions Downstream of an Abrupt Change in Roughness and Heat Flux’, Boundary-Layer Meteorol. 21, 341–356.Google Scholar
  12. Højstrup, J., Rasmussen, K., and Larsen, S. E.: 1976, ‘Dynamic Calibration of Temperature Wires in Still Air’, DISA Information, No. 20, 22–29.Google Scholar
  13. Horst, T. W.: 1973, ‘Spectral Transfer Functions for a Three-Component Sonic Anemometer’, J. Appl. Meteorol. 12, 1072–1075.Google Scholar
  14. Hyson, P. and Hicks, B. B.: 1975, ‘A Single-Beam Infrared Hygrometer for Evaporation Measurement’, J. Appl. Meteorol. 14, 301–307.Google Scholar
  15. Irwin, H. P. A. H.: 1979, ‘Cross-Spectra of Turbulence Velocities in Isotropic Turbulence’, Boundary-Layer Meteorol. 16, 237–243.Google Scholar
  16. Kaimal, J. C., Wyngaard, J. C., and Haugen, D. A.: 1968, ‘Deriving Power Spectra from a Three-Component Sonic Anemometer’, J. Appl. Meteorol. 7, 827–834.Google Scholar
  17. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.Google Scholar
  18. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.Google Scholar
  19. Kristensen, L.: 1974, ‘Some Aspects olf the Application of Digital Techniques on Stochastic Time Series’, Danish A. E. C. Riso, Report No. Riso-M-1756, 36 pp.Google Scholar
  20. Kristensen, L. and Jensen, N. O.: 1979, ‘Lateral Coherence in Isotropic Turbulence and in the Natural Wind’, Boundary-Layer Meteorol. 17, 353–373.Google Scholar
  21. Larsen, S. E., Weller, F. W., and Businger, J. A.: 1979, ‘A Phase Locked Loop Continuous Wave Sonic Anemometer Thermometer’, J. Appl. Meteorol. 18, 562–568.Google Scholar
  22. Lloyd, C. R., Shuttleworth, W. J., Gash, J. H. C., and Turner, M.: 1984, ‘A Microprocessor System for Eddy-Correlation’, Agr. For. Meteorol. 33, 67–80.Google Scholar
  23. McBean, G. A.: 1972, ‘Instrument Requirements for Eddy-Correlation Measurements’, J. Appl. Meteorol. 11, 1078–1084.Google Scholar
  24. McNeil, D. D. and Shuttleworth, W. J.: 1975, ‘Comparative Measurements of the Energy Fluxes over a Pine Forest’, Boundary-Layer Meteorol. 9, 297–313.Google Scholar
  25. Moore, C. J.: 1976, ‘Eddy Flux Measurements Above a Pine Forest’, Quart. J. Roy. Meteorol. Soc. 102, 913–918.Google Scholar
  26. Moore, C. J.: 1983, ‘On the Calibration and Temperature Behaviour of Single-Beam Infrared Hygrometers’, Boundary-Layer Meteorol. 25, 245–269.Google Scholar
  27. Ohtaki, E.: 1984, ‘Application of an Infrared Carbon Dioxide and Humidity Instrument to Studies Turbulent Transport’, Boundary-Layer Meteorol. 29, 85–107.Google Scholar
  28. Ohtaki, E.: 1985, ‘On the Similarity in Atmospheric Fluctuations of Carbon Dioxide, Water Vapour and Temperature over Vegetated Fields’, Boundary-Layer Meteorol. 32, 25–37.Google Scholar
  29. Panofsky, H. A.: 1978, ‘Matching in the Convective Planetary Boundary Layer’, J. Atmos. Sci. 35, 272–276.Google Scholar
  30. Raupach, M. R.: 1978, ‘Infrared Fluctuation Hygrometry in the Atmospheric Surface Layer’, Quart. J. R. Meteorol. Soc. 104, 309–322.Google Scholar
  31. Redford, T. G., Jr., Verma, S. B., and Rosenberg, N. J.: 1980, ‘Humidity Fluctuations over a Vegetated Surface Measured with a Lyman-Alpha Hygrometer and a Fine-Wire Thermocouple Psychrometer’, J. Appl. Meteorol. 19, 860–867.Google Scholar
  32. Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J., Marques, A., Fish, G., Silva, V., Nazare, M., Molion, L. C. B., Abreu Sa, L., Nobre, C. A., Cabral, O. M. R., Patel, S. R., and Carvalho, J.: 1984, ‘Eddy-Correlation Measurements of Energy Partition for Amazonian Forest’, Quart. J. R. Meteorol. Soc. 110, 1143–1162.Google Scholar
  33. Shuttleworth, W. J., McNeil, D. D., and Moore, C. J.: 1982, ‘A Switched Continuous-Wave Sonic Anemometer for Measuring Surface Heat Fluxes’, Boundary-Layer Meteorol. 23, 425–448.Google Scholar
  34. Silverman, B. A.: 1968, ‘The Effect of Spatial Averaging on Spectrum Estimation’, J. Appl. Meteorol. 7, 168–172.Google Scholar
  35. Smith, S. D. and Anderson, R. J.: 1984, ‘Spectra of Humidity, Temperature, and Wind over the Sea at Sable Island, Nova Scotia’, J. Geophys. Res. 89, 2029–2040.Google Scholar
  36. Spittlehouse, D. L. and Black, T. A.: 1979, ‘Determination of Forest Evapotranspiration Using Bowen Ratio and Eddy-Correlation Measurements’, J. Appl. Meteorol. 18, 647–653.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • C. J. Moore
    • 1
  1. 1.Institute of HydrologyWallingfordUK

Personalised recommendations