Boundary-Layer Meteorology

, Volume 38, Issue 3, pp 273–303 | Cite as

A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography

  • A. C. M. Beljaars
  • J. L. Walmsley
  • P. A. Taylor


A linear model for neutral surface-layer flow over complex terrain is presented. The spectral approach in the two horizontal coordinates and the finite-difference method in the vertical combines the simplicity and computational efficiency of linear methods with flexibility for closure schemes of finite-difference methods. This model makes it possible to make high-resolution computations for an arbitrary distribution of surface roughness and topography. Mixing-length closure as well as E − ε closure are applied to two-dimensional flow above sinusoidal variations in surface roughness, the step-in-roughness problem, and to two-dimensional flow over simple sinusoidal topography. The main difference between the two closure schemes is found in the shear-stress results. E − ε has a more realistic description of the memory effects in length and velocity scales when the surface conditions change. Comparison between three-dimensional model calculations and field data from Askervein hill shows that in the outer layer, the advection effects in the shear stress itself are also important. In this layer, an extra equation for the shear stress is needed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonia, R. A. and Luxton, R. E.: 1971, ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness. Part 1. Smooth to Rough’, J. Fluid Mech. 48, 721–761.Google Scholar
  2. Beljaars, A. C. M., Schotanus, P., and Nieuwstadt, F. T. M.: 1983, ‘Surface Layer Similarity under Nonuniform Fetch Conditions’, J. Clim. Appl. Meteorol. 22, 1800–1810.Google Scholar
  3. Bradley, E. F.: 1968, ‘A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 94, 361–379.Google Scholar
  4. Caneill, J. Y., Buty, D., and Saab, A. E.: 1985, Sensitivity Studies Related to Turbulence Parameterizations for Numerical Simulations of Mesoscale Flows over Complex Terrain, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.Google Scholar
  5. Detering, H. W. and Etling, D.: 1985, ‘Application of the E − ε Turbulence Closure Model to the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.Google Scholar
  6. Durst, F., Launder, B. E., Schmidt, F. W., and Whitelaw, J. H.: 1979, Turbulent Shear Flows I, Springer-Verlag, Berlin, 415 pp.Google Scholar
  7. Hunt, J. C. R. and Simpson, J. E.: 1982, ‘Atmospheric Boundary Layers over Non-Homogeneous Terrain’, in E. J. Plate (ed.), Engineering Meteorology, Elsevier, Amsterdam.Google Scholar
  8. Jackson, N. A.: 1976, ‘The Propagation of Modified Flow Downstream of a Change in Roughness’, Quart. J. Roy. Meteorol. Soc. 102, 924–933.Google Scholar
  9. Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Roy. Meteorol. Soc. 101, 929–955.Google Scholar
  10. Launder, B. E.: 1975, Progress in the Modelling of Turbulent Transport, Lecture notes presented at the von Kármán Institute, Rhode-St.-Genese, Belgium, March 3–7.Google Scholar
  11. Lumley, J. L. and Khajeh-Nouri, B.: 1974, ‘Computational Modelling of Turbulent Transport’, Adv. Geophys. 18A, 169–192.Google Scholar
  12. Mason, P. J. and Sykes, R. I.: 1979, ‘Flow over an Isolated Hill of Moderate Slope’, Quart. J. Roy. Meteorol. Soc. 105, 383–395.Google Scholar
  13. Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.Google Scholar
  14. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  15. Nieuwstadt, F. T. M. and Van Dop, H. (eds.): 1982, Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  16. Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York.Google Scholar
  17. Panofsky, H. A. and Townsend, A. A.: 1964, ‘Change of Terrain Roughness and the Wind Profile’, Quart. J. Roy. Meteorol. Soc. 90, 147–155.Google Scholar
  18. Peterson, E. W.: 1969a, ‘On the Relation Between the Shear Stress and the Velocity Profile After a Change in Surface Roughness’, J. Atmos. Sci. 26, 773–774.Google Scholar
  19. Peterson, E. W.: 1969b, ‘Modification of Mean Flow and Turbulent Energy by Change in Roughness Under Conditions of Neutral Stability’, Quart. J. Roy. Meteorol. Soc. 95, 561–575.Google Scholar
  20. Raithby, G. D. and Stubley, G. D.: 1985, Prediction and Comparison with Experiment of Three-Dimensional Flow over the Askervein Hill, Rep. Thermal Science Ltd., Waterloo, Ont., Canada.Google Scholar
  21. Rao, K. S., Wyngaard, J. C., and Coté, O. R.: 1974, ‘The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 31, 738–746.Google Scholar
  22. Richards, K. J.: 1980, ‘The Formation of Ripples and Dunes on an Erodible Bed’, J. Fluid Mech. 99, 597–618.Google Scholar
  23. Rodi, W.: 1980, Turbulence Models and Their Applications in Hydraulics: A State-of-the-Art Review, Inst. für Hydromechanik, Univ. of Karlsruhe, Germany.Google Scholar
  24. Shir, C. C.: 1972, ‘A Numerical Computation of Air Flow over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 29, 304–310.Google Scholar
  25. Taylor, P. A.: 1969, ‘On Wind and Shear Stress Profiles Above a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 95, 77–91.Google Scholar
  26. Taylor, P. A.: 1978, A Note on Velocity and Turbulent Energy Profiles in the Surface Layer with Particular Reference to the Numerical Modelling of Turbulent Boundary-Layer Flow Above Horizontally Inhomogeneous Terrain, Internal Rep. ARQL 4/78, Atmos. Environ. Service, Downsview, Ont., Canada, 36 pp.Google Scholar
  27. Taylor, P. A.: 1980, ‘Some Recent Results from a Numerical Model of Surface Boundary-Layer Flow over Hills’, in J. C. Wyngaard (ed.), Workshop on the Planetary Boundary Layer, Amer. Meteorol. Soc., Boston, pp. 150–157.Google Scholar
  28. Taylor, P. A. and Teunissen, H. W.: 1985, The Askervein Hill Project: Report on the September/October 1983 Main Field Experiment, Internal Rep. MSRB-84–6, Atmos. Environ. Service, Downsview, Ont., Canada.Google Scholar
  29. Taylor, P. A., Mason, P. J., and Bradley, E. F.: 1985, Boundary Layer Flow over Low Hills —A Review of Recent Field Experiments, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.Google Scholar
  30. Taylor, P. A., Walmsley, J. L., and Salmon, J. R.: 1983, ‘A Simple Model of Neutrally Stratified Boundary Layer Flow over Real Terrain Incorporating Wavenumber-Dependent Scaling’, Boundary-Layer Meteorol. 26, 169–189.Google Scholar
  31. Townsend, A. A.: 1965, ‘The Response of a Turbulent Boundary Layer to Abrupt Changes in Surface Conditions’, J. Fluid Mech. 22, 799–822.Google Scholar
  32. Townsend, A. A.: 1966, ‘The Flow in a Turbulent Boundary Layer After a Change in Surface Roughness’, J. Fluid Mech. 26, 255–266.Google Scholar
  33. Townsend, A. A.: 1972, ‘Flow in a Deep Turbulent Boundary Layer over a Surface Distorted by Water Waves’, J. Fluid Mech. 55, 719–735.Google Scholar
  34. Walmsley, J. L. and Salmon, J. R.: 1984, A Boundary-Layer Model for Wind Flow over Hills: Comparison of Model Results with Askervein '83 Data, Proc. European Wind Energy Conference and Exhibition, Hamburg, October 1984.Google Scholar
  35. Walmsley, J. L., Salmon, J. R., and Taylor, P. A.: 1982, ‘On the Application of a Model of Boundary-Layer Flow over Low Hills to Real Terrain’, Boundary-Layer Meteorol. 23, 17–46.Google Scholar
  36. Walmsley, J. L., Taylor, P. A., and Keith, T.: 1986, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Complex Terrain with Surface Roughness Modulations (MS3DJH/3R)’, Boundary-Layer Meteorol. 36, 157–186.Google Scholar
  37. Zeman, O.: 1981, ‘Progress in the Modelling of Planetary Boundary Layers’, Ann. Rev. Fluid Mech. 13, 253–272.Google Scholar
  38. Zeman, O. and Jensen, N. O.: 1985, Response of the Reynolds Stress Tensor to the Mean Flow Distortion over a Two-Dimensional Hill, Seventh Symp. Turb. Diff., Amer. Meteorol. Soc., November 12–15, Boulder, Co.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • A. C. M. Beljaars
    • 2
  • J. L. Walmsley
    • 1
  • P. A. Taylor
    • 1
  1. 1.Boundary-Layer Research DivisionAtmospheric Environment ServiceDownsviewCanada
  2. 2.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations