Preparation and characterization of nanograde osteoapatite-like rod crystals

  • L. Yubao
  • J. De Wijn
  • C. P. A. T. Klein
  • S. Van De Meer
  • K. De Groot
Papers

In this paper, nanograde osteoapatite-like rod crystals are made from wet synthesized calcium phosphate precipitates by hydrothermal treatment at 140°C under 0.3 MPa pressure for 2 h. The morphology, crystal structure, crystallinity and phase composition of these nanograde rod crystals are similar to those of thin apatite crystals in bony tissues of the body. This analogy provides an opportunity in the near future to build bone-like substitutes which consist of the nanograde rod crystals and special organic matrices and cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.de GROOT (ed), in “Bioceramics of calcium phosphate” (CRC Press, Boca Raton, 1983).Google Scholar
  2. 2.
    P. DUCHEYNE and W. HASTING (eds), in “Metal and ceramic biomaterials”, Vol. II (CRC Press, Boca Raton, 1984)Google Scholar
  3. 3.
    P. DUCHEYNE, J. Biomed. Mater. Res. 21 (A2) (1987) 219.Google Scholar
  4. 4.
    W. BONFIELD, M. D. GRYNPAS, A. E. TULLY, J. BOWMAN and J. ABRAM, Biomaterials 2 (1985) 85.Google Scholar
  5. 5.
    J. L. KATZ and R. A. HARPER, in M. B. Bever, (ed) “Encyclopedia of materials science and engineering” (Pergamon Press, NY, 1986) 474–476.Google Scholar
  6. 6.
    J. B. PARK and R. S. LAKES, in “Biomaterials: an introduction” (Plenum Press, New York and London, 1992) 192–196.Google Scholar
  7. 7.
    M. TANAHASHI, K. KAMIYA, T. SUZUKI and H. NASU, J. Mater. Sci. Mater. Med. 3 (1992) 48.Google Scholar
  8. 8.
    E. E. BERRY, J. Inorg. Nucl. Chem. 29 (1967) 322.Google Scholar
  9. 9.
    E. C. KREIDLER and F. A. HUMMEL, Amer. Mineral 55 (1970) 170.Google Scholar
  10. 10.
    M. KINOSHITA, K. ITATANI, F. S. HOWELL and A. KISHIOKA, Phosphorus Res. Bull. 1 (1991) 21.Google Scholar
  11. 11.
    K. IOKU and M. YOSHIMURA, Phosphorus Res. Bull. 1 (1991) 15–20.Google Scholar
  12. 12.
    A. PERLOFF and A. S. POSNER, Science 124 (1956) 583.Google Scholar
  13. 13.
    M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.Google Scholar
  14. 14.
    J. L. LACOURT, in “Biomaterials-hard tissue repair and replacement” (Elsevier Science Publishers B. V., Amsterdam, 1992) 81–95.Google Scholar
  15. 15.
    J. C. HEUGHEBAERT and G. BONEL, in “Biological and biomechanical performance of biomaterials” (Elsevier Science Publishers B.V., 1986) 9–14.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. Yubao
    • 2
  • J. De Wijn
    • 1
  • C. P. A. T. Klein
    • 1
  • S. Van De Meer
    • 1
  • K. De Groot
    • 1
  1. 1.Department of BiomaterialsUniversity of LeidenLeidenThe Netherlands
  2. 2.Institute of Materials Science and TechnologySichuan UniversityChengduPR China

Personalised recommendations