Applied Categorical Structures

, Volume 4, Issue 2–3, pp 307–327 | Cite as

Mal'cev categories and fibration of pointed objects

  • Dominique Bourn
Article

Abstract

The fibration p of pointed objects of a category E is shown to have some classifying properties: it is additive if and only if E is naturally Mal'cev, it is unital if and only if E is Mal'cev. The category E is protomodular if and only if the change of base functors relative to p are conservative.

Mathematics Subject Classifications (1991)

Primary 18D05 secondary 08B05 20L17 18G30 

Key words

fibration additive category Mal'cev category internal groupoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BournD.: The shift functor and the comprehensive factorization for internal groupoids, Cahiers Topologie Géom. Différentielle Catégoriques 28(3) (1987), 197–226.Google Scholar
  2. 2.
    BournD.: Normalization Equivalence, Kernel Equivalence and Affine Categories, Springer Lecture Notes in Math. 1488, 1991, 43–62.Google Scholar
  3. 3.
    BournD.: Low dimensional geometry of the notion of choice, Cat. Theory 1991, CMS Conf. Proceedings, Vol. 13 (1992), 55–73.Google Scholar
  4. 4.
    CarboniA.: Categories of affine spaces, J. Pure Appl. Algebra 61 (1989), 243–250.Google Scholar
  5. 5.
    CarboniA., LambekJ., and PedicchioM. C.: Diagram chasing in Mal'cev categories, J. Pure Appl. Algebra 69 (1991), 271–284.Google Scholar
  6. 6.
    CarboniA., PedicchioM. C., and PirovanoN.: Internal graphs and internal groupoids in Mal'cev categories, Cat. Theory 1991, CMS Conf. Proceedings, Vol. 13 (1992), 97–110.Google Scholar
  7. 7.
    Freyd, P. J. and Scedrov, A.: Categories, Allegories, North Holland Mathematical Library, Vol. 39, 1990.Google Scholar
  8. 8.
    JohnstoneP. T.: Affine categories and naturally Mal'cev categories, J. Pure Appl. Algebra 61 (1989), 251–256.Google Scholar
  9. 9.
    Johnstone, P. T.: Private communication.Google Scholar
  10. 10.
    Johnstone, P. T.: Topos Theory, Academic Press, 1977.Google Scholar
  11. 11.
    MacLaneS.: Categories for the Working Mathematician, Springer, Berlin, 1971.Google Scholar
  12. 12.
    Schubert, H.: Categories, Springer, 1972.Google Scholar
  13. 13.
    Smith, J. D. H.: Mal'cev Varieties, Springer Lecture Notes in Math. 554, 1976.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Dominique Bourn
    • 1
  1. 1.Université du LittoralDunkerqueFrance

Personalised recommendations