Advertisement

Applied Categorical Structures

, Volume 4, Issue 2–3, pp 195–212 | Cite as

Categorical aspects of equivariant homotopy

  • Jean-Marc Cordier
  • Timothy Porter
Article

Abstract

We use the language of homotopy coherent ends and coends, and of homotopy coherent Kan extensions, to give enriched versions of results of Elmendorff. This enables a description of the homotopy type of the space of maps between two G-complexes to be given.

Mathematics Subject Classifications (1991)

18G55 18D20 55P91 

Key words

equivariant homotopy homotopy coherence orbit category enriched category theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BournD. and CordierJ.-M.: A general formulation of homotopy limits, J. Pure Appl. Algebra 29 (1983), 129–141.Google Scholar
  2. 2.
    BousfieldA. K. and KanD. M.: Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972.Google Scholar
  3. 3.
    CordierJ.-M.: Sur la notion de diagramme homotopiquement cohérent, Cahiers Topologie Géom. Différentielle Catégoriques 23 (1982), 93–112.Google Scholar
  4. 4.
    Cordier, J.-M.: Extensions de Kan simplicialement cohérentes, Prépublications, Amiens, 1985.Google Scholar
  5. 5.
    CordierJ.-M.: Sur les limites homotopiques de diagrammes homotopiquement cohérents, Comp. Math. 62 (1987), 367–388.Google Scholar
  6. 6.
    CordierJ.-M. and PorterT.: Vogt's theorem on categories of homotopy coherent diagrams, Math. Proc. Cambridge Philos. Soc. 100 (1986), 65–90.Google Scholar
  7. 7.
    Cordier, J.-M. and Porter, T.: Coherent Kan Extensions, (i). Simplicially Enriched Ends and Coends, U.C.N.W. Pure Maths., Preprint 86.19, 1986.Google Scholar
  8. 8.
    CordierJ.-M. and PorterT.: Fibrant diagrams, rectifications and a construction of Loday, J. Pure Appl. Algebra 67 (1990), 111–124.Google Scholar
  9. 9.
    Cordier, J.-M. and Porter, T.: Homotopy coherent category theory, Preprint, 1995.Google Scholar
  10. 10.
    DwyerW. G. and KanD. M., Singular functors and realization functors, Proc. Kon. Nederl. Akad. Wetensch. A87=Ind. Math. 46 (1984), 147–153.Google Scholar
  11. 11.
    ElmendorfA.: Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), 275–284.Google Scholar
  12. 12.
    Kelly, G. M.: The Basic Concepts of Enriched Category Theory, LMS Lecture Notes 64, Cambridge University Press, 1983.Google Scholar
  13. 13.
    LückW.: Transformation Groups and Algebraic K-Theory, Lecture Notes in Math. 1408, Springer-Verlag, Berlin, 1989.Google Scholar
  14. 14.
    May, J. P.: Classifying spaces and fibrations, Mem. Amer. Math. Soc. 155 (1975).Google Scholar
  15. 15.
    MeyerJ.-P.: Bar and cobar constructions, I, J. Pure Appl. Algebra 33 (1984) 163–207.Google Scholar
  16. 16.
    MoerdijkI. and SvenssonJ.-A.: Algebraic classification of equivariant homotopy 2-types, J. Pure Appl. Algebra 89 (1993), 187–216.Google Scholar
  17. 17.
    SeymourR. M.: Some functorial constructions on G-spaces, Bull. London Math. Soc. 15 (1983), 353–359.Google Scholar
  18. 18.
    Tammo TomDieck: Transformation Groups, de Gruyter Studies in Mathematics, 8, de Gruyter, Berlin-New York, 1987.Google Scholar
  19. 19.
    VogtR. M.: Homotopy limits and colimits, Math. Z. 134 (1973), 11–52.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jean-Marc Cordier
    • 1
  • Timothy Porter
    • 2
  1. 1.Faculté de Mathématiques ed d'InformatiqueUniversité de Picardie-Jules VerneAmiens Cédex 1France
  2. 2.School of MathematicsUniversity of WalesBangorWales, U.K.

Personalised recommendations