Advertisement

Journal of Global Optimization

, Volume 2, Issue 2, pp 117–132 | Cite as

Approximation in multiobjective optimization

  • Bernard Lemaire
Article

Abstract

Some results of approximation type for multiobjective optimization problems with a finite number of objective functions are presented. Namely, for a sequence of multiobjective optimization problems P n which converges in a suitable sense to a limit problem P, properties of the sequence of approximate Pareto efficient sets of the P n 's, are studied with respect to the Pareto efficient set of P. The exterior penalty method as well as the variational approximation method appear to be particular cases of this framework.

Key words

Epiconvergence ε-efficient set Mosco-convergence multiobjective optimization Pareto penalization variational approximation 

AMS subject classifications (1991)

65K05 65K10 90C31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J. P. (1979), Mathematical Methods of Game and Economic Theory, North Holland Publ. Amsterdam.Google Scholar
  2. 2.
    Attouch, H. (1984), Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program, Boston-London-Melbourne.Google Scholar
  3. 3.
    Aze, D. and J. P., Penot (1987), Operations on Convergent Families of Sets and Functions, Publication AVAMAC, Université de Perpignan, France, no. 87–05, Vol. 1.Google Scholar
  4. 4.
    Céa, J. (1971), Optimisation, théorie et algorithmes, Dunod.Google Scholar
  5. 5.
    Dugośiia, D. P. and M. D., Aśić (1986), Uniform Convergence and Pareto Optimality, Optimization 17 (6), 723–729.Google Scholar
  6. 6.
    Karlin, S. (1960), Mathematical Methods and Theory in Games, Programming and Economics, Vol. I, McGraw Hill, New York.Google Scholar
  7. 7.
    Kutateladze, S. S. (1979), Convex ε-Programming, Soviet Mathematical Doklady 20, 391–393.Google Scholar
  8. 8.
    Lemaire, B. (1988), Coupling Optimization Methods and Variational Convergence, International Series of Numerical Mathematics, Vol. 84(c), Birkhäuser Verlag, pp. 163–179.Google Scholar
  9. 9.
    Lemaire, B. (1987), Convergence in Vector Optimization. Communication at the Congrès Franco-Québécois d' Analyse Non-Linéaire, Perpignan, France.Google Scholar
  10. 10.
    Vály, István (1987), Epsilon Solutions and Duality in Vector Optimization, Working paper WP-87–43. Institute for Applied Systems Analysis. Laxenbourg, Austria.Google Scholar
  11. 11.
    White, D. J. (1984), Multiobjective Programming and Penalty Functions, JOTA 43 (4), 583–599.Google Scholar
  12. 12.
    White, D. J. (1986), Epsilon Efficiency, Journal of Optimization Theory and Application 49 (2), 319–337.Google Scholar
  13. 13.
    Zangwill, W. I. (1969), Nonlinear Programming, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Bernard Lemaire
    • 1
  1. 1.Université des Sciences et Techniques du LanguedocMontpellierFrance

Personalised recommendations