Boundary-Layer Meteorology

, Volume 18, Issue 3, pp 247–267 | Cite as

An algorithm for remote sensing of water color from space

  • M. Viollier
  • D. Tanré
  • P. Y. Deschamps


The ocean color algorithm proposed in this paper takes into account the effects of Rayleigh and aerosol scattering. The inherent reflectance and the diffuse transmittance of the Rayleigh atmosphere are expressed as functions of optical thickness and satellite measurement geometry with the aid of simple and accurate formulas. In the case of a turbid atmosphere, from which the aerosol optical thickness is unknown, the aerosol contribution is estimated with the aid of a measurement in a channel where the ocean is a blackbody (in the red or near infrared). If the relationship between the ocean color and the chlorophyll-like pigment concentration is assumed to be known at sea level, it is shown that the chlorophyll-like pigment concentration at an open ocean site can be determined from space to within a factor of 1.5 to 3 (uncertainty equal to 0.2 to 0.5 log interval), depending on the atmospheric turbidity.


Turbidity Open Ocean Optical Thickness Satellite Measurement Ocean Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous: 1977, ‘Global Monitoring of the Environment for Selected Atmospheric Constituents 1975’, Environmental Data Service — Asheville NC 28801 U.S.A.Google Scholar
  2. Arvesen, J. C., Millard, J. P., and Weaver, E. C.: 1973, ‘Remote Sensing of Chlorophyll and Temperature in Marine and Fresh Waters’, Astronaut. Acta 18, 229–239.Google Scholar
  3. Box, M. A., and Lo, S. Y.: 1976, ‘Approximate Determination of Aerosol Size Distribution’, J. Appl. Meteorol. 15, 1068–1076.Google Scholar
  4. Clarke, G. L., Ewing, G. C., and Lorensen, C. J.: 1970, ‘Spectra of Backscattered Light from the Sea Obtained from Aircraft as a Measure of Chlorophyll Concentration’, Science 167, 1119–1121.Google Scholar
  5. Cox, C., and Munk, W.: 1965, ‘Slopes of the Sea Surface Deduced from Photographs of Sun Glitter’, Bull. Scripps Inst. Oceanogr. Univ. Calif. 6, 401–488.Google Scholar
  6. Curran, R. I.: 1972, ‘Ocean Color Determination through a Scattering Atmosphere’, Appl. Opt. 11, 1857–1866.Google Scholar
  7. Deschamps, P. Y., Lecomte, P., and Viollier, M.: 1977, ‘Remote Sensing of Ocean Color and Detection of Chlorophyll Content’, Proc, 11th Int. Symp. on Remote Sensing of Environment, Ann Arbor, 1021–1033.Google Scholar
  8. Gordon, H. R.: 1978, ‘Removal of Atmospheric Effects from Satellite Imagery of the Oceans’, Appl. Opt. 17, 1631–1636.Google Scholar
  9. Hovis, W. A., Forman, M. L., and Blaine, L. R.: 1973, ‘Detection of Ocean Color Changes from High Altitude’, NASA X-652-73-371.Google Scholar
  10. Hovis, W. A.: 1978, ‘The Coastal Zone Color Scanner (CZCS) Experiment’, The Nimbus 7 Users' Guide NASA, G.S.F.C.Google Scholar
  11. Hoyt, D. V.: 1977, ‘A Redetermination of the Rayleigh Optical Depth and its Application to Selected Solar Radiation Problems’, J. Appl. Meteorol., 16, 432–436.Google Scholar
  12. Kattawar, G. W., and Humphreys, T. I.: 1976, ‘Remote Sensing of Chlorophyll in an Atmosphere-Ocean Environment: A Theoretical Study’, Appl. Opt. 15, 273–282.Google Scholar
  13. London, J., Bojkov, R. D., Oltsùans, S., and Kelly, J. I.: 1976, ‘Atlas of the Global Distribution of Total Ozone’, NCAR/TN/133 + STR.Google Scholar
  14. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Voltz, F. E., and Garine, J. S.: 1971, ‘Optical Properties of the Atmosphere’, AFCRL 71-0279 Envir. Res, Papers No. 354.Google Scholar
  15. Miller, J. R., Jain, S. C., O'Neill, N. T., McNeil, W. R., and Thompson, K. P. B.: 1977, ‘Interpretation of Airborne Spectral Reflectance Measurements over Georgian Bay’, Remote Sensing Environ. 6, 183–200.Google Scholar
  16. Plass, G. N., Kattawar, G. W., and Hitzfelder, S. J.: 1976, ‘Multiple Scattered Radiation Emerging from Rayleigh and Continental Haze Layers. 1: Radiance, Polarization and Neutral Points’, Appl. Optics, 15, 632–647.Google Scholar
  17. Sekera, Z., and Kahle, A. B.: 1966, ‘Scattering Functions for Rayleigh Atmospheres of Arbitrary Thickness’, Rand Report R-452-PR.Google Scholar
  18. Tanré, D., and Herman, M.: 1978, ‘Correction de l'effet de diffusion atmosphérique pour les données de télédétection’, Proceedings of an Int. Conf. on Earth Observation held at Toulouse ESA-SP 134, 355–360.Google Scholar
  19. Viollier, M., Deschamps, P. Y., and Lecomte, P.: 1978a, ‘Airborne Remote Sensing of Chlorophyll Content under Cloudy Sky as Applied to the Tropical Waters in the Gulf of Guinea’, Remote Sensing of Environ. 7, 235–248.Google Scholar
  20. Viollier, M., Lecomte, P., Bougard, M., and Richard, A.: 1978b, ‘Expérience aéroportée de télédétection (température et couleur de la mer) dans le détroit du Pas de Calais’, Oceanologica Acta, 1, 265–269.Google Scholar
  21. Wilson, W. M., Austin, R. W., and Smith, R. C.: 1978, ‘Optical Remote Sensing of Chlorophyll in Ocean Waters’, Proc, of the 12th Int. Symp. on Remote Sensing of Environment (Manila), 1103–1113.Google Scholar

Copyright information

© D. Reidel Publishing Co 1980

Authors and Affiliations

  • M. Viollier
    • 1
  • D. Tanré
    • 1
  • P. Y. Deschamps
    • 1
  1. 1.Laboratoire d'optique atmosphérique (ERA 466) Université des sciences et techniques de Lille, U.E.R. de Physique FondamentaleVilleneuve d'AscqFrance

Personalised recommendations