Synthesis, X-ray diffraction and solid-state 31P magic angle spinning NMR study of α-tricalcium orthophosphate

  • M. Bohner
  • J. LeMaître
  • A. P. LeGrand
  • J.-B. D'Espinose de la Caillerie
  • P. Belgrand


The effects of synthesis conditions on the quantitative preparation of α-tricalcium phosphate (α-TCP) have been investigated. The following parameters of the synthesis were considered: nature of the starting material-Ca-deficient hydroxyapatite, DAP, versus hydroxyapatite-anhydrous dicalcium phosphate mixtures (HAP-DCPA); Ca/P atomic ratio of the mixture, calcination temperature and time, and cooling rate. The yield and crystallinity of the final product have been estimated using X-ray diffraction (XRD) and solid state 31P magic angle spinning NMR (MAS-NMR) techniques. The results show that pure, well-crystallized α-TCP powders exhibiting nearly ideal MAS-NMR spectra, can be obtained by reactive sintering of HAP-DCPA (Ca/P=1.50...1.52) mixtures, at 1400°C for 8 h. The broadening of MAS-NMR spectra can be used as an indicator of structural order in the final product. The α-TCP yield with DAP was always less than 50%.


Cool Rate Calcination Hydroxyapatite Calcination Temperature Atomic Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.DE GROOT, “Bioceramics of calcium phosphate” (CRC Press, Boca Raton, FL 1983).Google Scholar
  2. 2.
    J. C. ELLIOTT, “Structure and chemistry of apatites and other calcium orthophosphates” (Elsevier, Amsterdam, 1994) pp. 34–50.Google Scholar
  3. 3.
    G. HEIMKE and P. GRISS, “Bioceramics of calcium phosphate”, edited by K.DE GROOT (CRC Press, Boca Raton, FL 1983) pp. 79–97.Google Scholar
  4. 4.
    P. VIEILLARD and Y. TARDY, in “Phosphate minerals”, edited by J. O. NRIAGU and P. B. MOORE (Springer, Verlag, Berlin, 1984) pp. 171–198.Google Scholar
  5. 5.
    J. ANDO, Bull. Chem. Soc. Jpn. 31 (1956) 196.Google Scholar
  6. 6.
    H. MONMA, MRS Int. Meet. Adv. Mater. 13 (1989) 15.Google Scholar
  7. 7.
    A. A. MIRTCHI, J. LEMAITRE and N. TERAO, Biomaterials 10 (1989) 475.Google Scholar
  8. 8.
    M. BOHNER, J. LEMAITRE and T. A. RING, in “Third Euro-Ceramics”, edited by F. Duran and J. F. Fernandez, Faeza Editrice Iberica) 3 (1993) 95.Google Scholar
  9. 9.
    M. BOHNER, Thesis no 1171, Ecole Polytechnique Fédérale de Lausanne (Switzerland) 1993.Google Scholar
  10. 10.
    M. MATHEW, L. W. SCHROEDER, B. DICKENS and W. E. BROWN, Acta Crystallogr. B 33 (1977) 1325.Google Scholar
  11. 11.
    B. DICKENS, L. W. SCHROEDER and W. E. BROWN, J. Solid State Chem. 10 (1974) 232.Google Scholar
  12. 12.
    M. A. BREDIG, H. H. FRANCK and H. FüLNDER, Zeitschr. Elektrochem. 39 (1933) 959.Google Scholar
  13. 13.
    E. D. EANES, Calcif. Tissue Res. 5 (1970) 33.Google Scholar
  14. 14.
    T. KANAZAWA, T. UMEGAKI and N. UCHIYAMA. J. Chem. Technol. Biotechnol. 32 (1982) 399.Google Scholar
  15. 15.
    A. MORTIER, J. LEMAITRE and P. G ROUXHET. Thermochim. Acta 113 (1979) 133.Google Scholar
  16. 16.
    A. MORTIER, J. LEMAITRE and P. G. ROUXHET, Thermochim. Acta 143 (1989) 143.Google Scholar
  17. 17.
    J. H. WELCH and W. GUTT, J. Chem. Soc. (1961) 4442.Google Scholar
  18. 18.
    G. TRöMEL, H. J. HARKORT and W. HOTOP, Zeitschr. Anorg. Chem. 256 (1948) 253.Google Scholar
  19. 19.
    R. W. NURSE, J. H. WELCH and W. GUTT. J. Chem. Soc. (1959) 1077.Google Scholar
  20. 20.
    J. ANDO, Bull. Chem. Soc. Jpn. 31 (1958) 201.Google Scholar
  21. 21.
    J. L. MIQUEL, L. FACCHINI, A. P. LEGRAND, X. MARCHANDISE, P. LECOUFFE, M. CHAVANAZ, M. DONAZZAN, C. REY and J. LEMAITRE, Clin. Mater. 5 (1990) 115.Google Scholar
  22. 22.
    D. C. MONTGOMERY, in “Design and analysis of experiments”, 3rd Edn (John Wiley & Sons, New York, 1991) pp. 335–386.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. Bohner
    • 1
  • J. LeMaître
    • 1
  • A. P. LeGrand
    • 2
  • J.-B. D'Espinose de la Caillerie
    • 2
  • P. Belgrand
    • 2
  1. 1.Laboratoire de Technologie des PoudresEcole Polytechnique Fédérale de LausanneLausanneSwizerland
  2. 2.Laboratoire de Physique QuantiqueCNRS URA 1428, ESPCIParis CEDEX 05France

Personalised recommendations