Crystallinity and structural changes in HA plasma-sprayed coatings induced by cyclic loading in physiological media

  • R. L. Reis
  • F. J. Monteiro


In this study hydroxyapatite plasma-sprayed Ti-6Al-4V was characterized by X-ray diffraction (XRD) after being cyclically loaded, while immersed in two different testing environments: Hank's balanced salt solution (HBSS) and an isotonic saline solution (0.15 m NaCl). An original method was developed to test these systems under cyclic bending, while immersed in the testing solution. The crystallinity of the coating was calculated, before and after testing. Crystallinity changes were related to coating dissolution rates, measured by atomic absorption spectroscopy (AAS) and by a photocolourimetric method using ascorbic acid. Structural changes induced either by the plasma-spraying procedure or due to corrosion-fatigue tests, namely a preferential dissolution of the coating's amorphous phase, were also found in X-ray diffraction patterns. Long-term immersion tests, without any applied load, were carried out for assessing cyclic loading effects. An immersion for 2 years in static conditions was found to be equivalent to a cyclic test of 27.8 h in the same solution, as measured by the changes on the coating structure and by the amount of coating material lost to the solution.


Ascorbic Acid Hydroxyapatite Dissolution Rate Cyclic Loading Cyclic Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. JI and P. M. MARQUIS, Biomaterials 14 (1993) 64.Google Scholar
  2. 2.
    H. G. PFAFF, G. WILLMAN and R. HENNE, in Proceedings of the 10th European Conference on Biomaterials, Davos, Switzerland, 1993, edited by B. Rahn (European Society for Biomaterials, 1993) p. 110.Google Scholar
  3. 3.
    S. D. BROWN, Thin Solid Films 119 (1984) 127.Google Scholar
  4. 4.
    R. G. T. GEESINK, PhD thesis, Univ. Leiden, The Netherlands (1988).Google Scholar
  5. 5.
    C. A.van BLITTERSWIJK, J. J. GROTE, W. KUYPERS, C. J. G. BLOK-VAN HOEK and W. Th. DAEMS, Biomaterials 6 (1985) 243.Google Scholar
  6. 6.
    C. C. RIBEIRO and M. A. BARBOSA, in “Bioceramics 4”, edited by W. BONFIELD, G. W. HASTINGS and K. TANNER (Butterworth-Heinemann London, 1991) p. 145.Google Scholar
  7. 7.
    P. DUCHEYNE and K. E. HEALY, J. Biomed. Mater. Res. 22 (1988) 1137.Google Scholar
  8. 8.
    R. Y. WHITEHEAD, L. C. LUCAS and W. R. LACEFIELD, Clin. Mater. 12 (1993) 31.Google Scholar
  9. 9.
    J. D. DE BRUIJN, J. E. DAVIES, J. S. FLACH, K. DE GROOT and C. A. VAN BLITTERSWIJK, in Proceedings of the 4th World Congress on Biomaterials — Workshop on Biomaterials and Tissue Interactions, edited by U. Gross (Berlin, 1992) p. 23.Google Scholar
  10. 10.
    M. MORITA, T. SASADA, H. HAYASHI and Y. TSUKAMOTO, J. Biomed. Mater. Res. 22 (1988) 529.Google Scholar
  11. 11.
    S. A. BROWN, L. J. FARSNWORTH, K. MERRITT and T. D. CROWE, J. Biomed. Mater. Res. 22 (1988) 321.Google Scholar
  12. 12.
    F. KUMMER and W. JAFFE, J. Appl. Biomater. 3 (1992) 211.Google Scholar
  13. 13.
    R. L. REIS, F. J. MONTEIRO and A. GARRIDO, in “Bioceramics 5”, Kyoto, November, 1992, edited by T. YAMAMURA, T. KOKUBO and T. NAKAMURA (Kobunshi Kankokai, Tokyo, 1992) p. 25.Google Scholar
  14. 14.
    R. L. REIS and F. J. MONTEIRO, in “Bioceramics 6”, Philadelphia, USA, 1993, edited by P. DUCHEYNE and D. CHRISTIANSEN (Butterworth-Heinemann, New York, 1993) p. 413.Google Scholar
  15. 15.
    R. L. REIS, F. J. MONTEIRO and G. W. HASTINGS, J. Mater. Sci. Mater. Med. 5 (1994) 457.Google Scholar
  16. 16.
    R. L. REIS and F. J. MONTEIRO, in Proceedings of the NATO/ASI on Materials Science and Implant Orthopaedic Surgery II, Chania, Greesce, June 1994, edited by R. KOSSOWSKY and N. KOSSOWSKY (May 1995, NATO/ASI series E: Applied Sciences, Kluwer Press, Amsterdam) p. 163.Google Scholar
  17. 17.
    H. JI, C. B. PONTON and P. M. MARQUIS, J. Mater. Sci. Mater. Med. 3 (1992) 283.Google Scholar
  18. 18.
    J. WENG, X. LIU, X. ZHANG, Z. MA, X JI and Z. ZYMAN, Biomaterials 14 (1993) 578.Google Scholar
  19. 19.
    K.DE GROOT, C. A. P. T. KLEIN, J. G. C. WOLKE and J. M. A. BLIECK-HOGERVORST, in “Handbook of bio-active ceramics”, Vol. 2, edited by T. YAMAMURO, L. L. HENCH and J. WILSON (CRC Press, Boca Raton, FL, 1990) p. 133.Google Scholar
  20. 20.
    J. DELéCRIN, S. SZUMUCKLER-MONCLER, G. DACULSI, J. RIEU and B. DUQUET, in “Bioceramics 4”, London, September, 1991, edited by W. BONFIELD, G. W. HASTINGS and K. E. TANNER (Butterworth-Heinemann, London, 1991) p. 311.Google Scholar
  21. 21.
    J. D.DE BRUIJN, J. S. FLACH, H. LEENDERS, J. VAN DER BRINK and C.VAN BLITTERSWIJK, in “Bioceramics 5”, Kyoto, November, 1992, edited by T. YAMAMURA, T. KOKUBO and T. NAKAMURA (Kobunshi Kankokai, Tokyo, 1992) p. 259.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • R. L. Reis
    • 1
    • 2
  • F. J. Monteiro
    • 1
    • 2
  1. 1.Department of Metallurgical Engineering, FEUPUniversity of PortoPorto CodexPortugal
  2. 2.INEB-Instituto de Engenharia BiomédicaPortoPortugal

Personalised recommendations