, Volume 52, Issue 1, pp 73–85

Evolution of five multilocus isozyme systems in the chordates

  • Suzanne E. Fisher
  • James B. Shaklee
  • Stephen D. Ferris
  • Gregory S. Whitt


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allendorf, F.W., F.M. Utter & B.P. May (1975). Gene duplication within the family Salmonidae; detection and determination of the genetic control of duplicate loci through inheritance studies and examination of populations. In: C.L. Markert (Ed.), Isozymes IV. Academic Press, New York, pp. 415–432.Google Scholar
  2. Atkin, N.B. & S. Ohno (1967). DNA values of four primitive chordates. Chromosoma 23: 10–13.Google Scholar
  3. Avise, J.C. & B.G. Kitto (1973). Phosphoglucose isomerase gene duplication in the bony fishes, an evolutionary history. Biochem. Genet. 8: 113–132.Google Scholar
  4. Bailey, G.S., A.C. Wilson, J.E. Halver & C.L. Johnson (1970). Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J. biol. Chem. 245: 5927–5940.Google Scholar
  5. Brewer, J.M., A.J. Peace & R.B. Ashworth (1974). Experimental Techniques in Biochemistry. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  6. Britten, R.J. & E.H. Davidson (1969). Gene regulation for higher cells: A theory. Science 165: 349–357.Google Scholar
  7. Britten, R.J. (1971). Repetitive and nonrepetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46: 111–138.Google Scholar
  8. Bush, G.L., S.M. Case, A.C. Wilson & J.L. Patton (1977). Rapid speciation and chromosomal evolution in mammals. Proc. natn. Acad. Sci. U.S.A. 74: 3942–3946.Google Scholar
  9. Champion, M.J. & G.S. Whitt (1976). Differential gene expression in multilocus isozyme systems of the developing green sunfish. J. exp. Zool. 196: 263–282.Google Scholar
  10. Clayton, J.W., W.G. Franzin & D.N. Tretiak (1973a). Genetics of glycerol-3-phosphate dehydrogenase isozymes in white muscle of lake whitefish (Coregonus clupeiformis). J. Fish. Res. Bd. Can. 30: 187–193.Google Scholar
  11. Clayton, J.W., R.E.K. Harris & D.N. Tretiak (1973b). Identification of supernatant and mitochondrial isozymes of malate dehydrogenase on electropherograms applied to the taxonomic discrimination of walleye (Stizostedion vitreum vitreum), sauger (S. canadense) and suspected interspecific hybrid fishes. J. Fish. Res. Bd. Canada 30: 927–938.Google Scholar
  12. Dando, P.R. (1974). Distribution of multiple glucosephosphate isomerases in teleostean fishes. Comp. Biochem. Physiol. 47B: 663–679.Google Scholar
  13. Dayhoff, M. (1972). Atlas of Protein Sequence and Structure Volume 5. National Biomedical Research Foundation, Washington, D.C.Google Scholar
  14. De Lorenzo, D.L. & F.H. Ruddle (1969). Genetic control of two electrophoretic variants of glucosephosphate isomerase in the mouse. Biochem. Genet. 3: 151–162.Google Scholar
  15. Denton, T.E. (1973). Fish Chromosome Methodology. Charles C. Thomas, Springfield, Ill.Google Scholar
  16. Engel, W., J. Schmidtke & U. Wolf (1971). Genetic variation of α-glycerophosphate dehydrogenase isoenzymes in clupeoid and salmonid fish. Experientia 27: 1489–1491.Google Scholar
  17. Eppenberger, H.M., A. Scholl & H. Ursprung (1971). Tissue specific isoenzyme patterns of creatine kinase ( in trout. FEBS Letters 14: 317–319.Google Scholar
  18. Eppenberger, M.E., H.M. Eppenberger & N.O. Kaplan (1967). Evolution of creatine kinase. Nature 214: 239–241.Google Scholar
  19. Ferris, S.D. & G.S. Whitt (1977). Loss of duplicate gene expression after polyploidisation. Nature 265: 258–260.Google Scholar
  20. Fisher, S.E. & G.S. Whitt (1978a). Evolution of the creatine kinase isozyme system in primitive vertebrates. Proc. Calif. Acad. Sci. 134: 142–159.Google Scholar
  21. Fisher, S.E. & G.S. Whitt (1978b). Evolution of isozyme loci and their differential tissue expressions: Creatine kinase as a model system. J. molec. Evol. 12: 25–55.Google Scholar
  22. Goldberg, E. (1977). Isozymes in testes and spermatozoa. In: M.C. Rattazzi, J.G. Scandalios and G.S. Whitt, (eds.) Isozymes: Current Topics in Biological and Medical Research. Alan R. Liss, Inc., New York, Vol. 1, pp. 79–124.Google Scholar
  23. Gracy, R.W. (1975). Nature of the multiple forms of glucosephosphate and triosephosphate isomerases. In: C.L. Markert, (ed.) Isozymes I. Academic Press, New York, pp. 471–487.Google Scholar
  24. Hinegardner, R. (1968). Evolution of cellular DNA content in teleost fishes. Am. Nat. 102: 517–523.Google Scholar
  25. Hinegardner, R. & D.E. Rosen (1972). Cellular DNA content and the evolution of teleostean fishes. Am. Nat. 106: 621–644.Google Scholar
  26. Holmes, R.S. & R.K. Scopes (1974). Immunochemical homologies among vertebrate lactate dehydrogenase isozymes. Eur. J. Biochem. 43: 167–177.Google Scholar
  27. Hopkinson, D.A., S. Peters & H. Harris (1974). Rare electrophoretic variants of glycerol-3-phosphate dehydrogenase: Evidence for two structural gene loci (GPD1 and GPD2). Ann. hum. Genet. 37: 477–484.Google Scholar
  28. Horowitz, J.H. & G.S. Whitt (1972). Evolution of a nervous system specific lactate dehydrogenase isozyme in fish. J. exp. Zool. 180: 13–32.Google Scholar
  29. IUPAC-IUB Commission on Enzyme Nomenelature (1973). Enzyme Nomenclature. Elsevier Pub. Inc., New York.Google Scholar
  30. IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1977). Nomenclature of multiple forms of enzymes recommendation (1976). J. biol. Chem. 252: 5039–5941.Google Scholar
  31. Jacobs, H., H. Heldt & M. Klingbergen (1964). High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isozyme of creatine kinase. Biochem. biophys. Res. Comm. 16: 516–521.Google Scholar
  32. Karig, L.M. & A.C. Wilson (1971). Genetic variation in supernatant malate dehydrogenase of birds and reptiles. Biochem. Genet. 5: 211–221.Google Scholar
  33. Kimura, M. & T. Ohta (1974). On Some Principles Governing Molecular Evolution. Proc. natn. Acad. Sci. U.S.A. 71: 2848–2852.Google Scholar
  34. Kleine, T.O. (1965). Localization of creatine kinase in microsomes and mitochondria of human heart and skeletal muscle and cerebral cortex. Nature 207: 1393–1394.Google Scholar
  35. Kucherlapati, R.S., R.P. Cregan & F.H. Ruddle (1974). Progress in human gene mapping by somatic cell hybridization. In: The Cell Nucleus. Academic Press, New York, Vol. II, pp. 209–222.Google Scholar
  36. Langley, C.H. & W.M. Fitch (1974). An examination of the constancy of the rate of molecular evolution. J. molec. Evol. 3: 161–177.Google Scholar
  37. Lebherz, H.G. & W.J. Rutter (1969). Distribution of fructose biphosphate aldolase variants in biological systems. Biochemistry 8: 109–121.Google Scholar
  38. Long, G.L. (1976). The stereospecific distribution and evolutionary significance of invertebrate lactate dehydrogenases. Comp. Biochem. Physiol. 55B: 77–88.Google Scholar
  39. Markert, C.L. & F. Moller (1959). Multiple forms of enzymes: Tissue, ontogenetic, and species specific patterns. Proc. natn. Acad. Sci. U.S.A. 45: 753–763.Google Scholar
  40. Markert, C.L. (1975). Biology of Isozymes. In: C.L. Markert (ed.), Isozymes I, Academic Press, New York, pp. 1–10.Google Scholar
  41. Markert, C.L., J.B. Shaklee & G.S. Whitt (1975). Evolution of a gene. Science 189: 102–114.Google Scholar
  42. Masters, C.J. & R.S. Holmes (1975). Haemoglobin, Isoenzymes and Tissue Differentiation. North Holland Pub. Corp., Amsterdam.Google Scholar
  43. Mo, Y., C.D. Young, R.W. Gracy, N.D. Carter & P.R. Dando. (1975). Isolation and characterization of tissue-specific isozymes of glucosephosphate isomerase from catfish and conger. J. biol. Chem. 250: 6747–6755.Google Scholar
  44. Morizot, D.C., D.A. Wright & M.J. Siciliano (1977). Three linked enzyme loci in fishes: Implications in the evolution of vertebrate chromosomes. Genetics 86: 645–656.Google Scholar
  45. Nei, M. & R. Chakraborty (1973). Genetic distance and electrophoretic identity of proteins between taxa. J. molec. Evol. 2: 323–328.Google Scholar
  46. Nelson, J.S. (1976). Fishes of the world. John Wiley and Sons, New York.Google Scholar
  47. Numachi, K. (1970). Lacture and malate dehydrogenase isozyme patterns in fish and marine mammals. Bull. Jap. Soc. Sci. Fish. 36: 1067–1077.Google Scholar
  48. Mumachi, K. (1971). Genetic polymorphism of α-glycerophosphate dehydrogenase in saury, Cololabis saura I. Seven variant forms and genetic control. Bull. Jap. Soc. Sci. Fish., 37: 755–760.Google Scholar
  49. Numachi, K., Y. Matsumuya & R. Sato (1972). Duplicate genetic loci and variant from (sic) of malate dehydrogenase in chum salmon and rainbow trout. Bull. Jap. Soc. Sci. Fish. 38: 699–706.Google Scholar
  50. Ohno, S., U. Wolf & N.B. Atkin (1967). Evolution from fish to mammals by gene duplication. Hereditas 59: 169–187.Google Scholar
  51. Ohno, S. (1970). Evolution by Gene Duplication. Springer-Verlag, New York.Google Scholar
  52. Ohno, S. (1974). Protochordata, Cyclostomata, and Pisces. In: B. John, (ed.), Animal Cytogenetics 4. Borntraeger, Berlin.Google Scholar
  53. Perriard, J.C., A. Scholl & H.M. Eppenberger (1972). Comparative studies on creatine kinase isozymes from skeletal muscle and stomach of trout. J. exp. Zool., 182: 110–126. 110–126.Google Scholar
  54. Schmidtke, J., G. Dunkhase & W. Engel (1975). Genetic variation of phosphoglucose isomerase isoenzymes in fish of the orders Ostariophysi and Isopondyli. Comp. Biochem. Physiol. 50B: 395–398.Google Scholar
  55. Schmidtke, J., C. Weiler, B. Kunz & W. Engel (1977). Isozymes of a tunicate and a cephalochordate as a test of polyploidization in chordate evolution. Nature 266: 532–533.Google Scholar
  56. Scholl, A. & H.M. Eppenberger (1971). Patterns of isoenzymes of creatine kinase in teleostean fish. Comp. Biochem. Physiol. 42B: 221–226.Google Scholar
  57. Senkbeil, I. & H.B. WhiteIII (1978). Parallel evolution of pairs of dehydrogenase isozymes. J. molec. Evol. 11: 57–66.Google Scholar
  58. Sensabaugh, G.F. & N.O. Kaplan (1971). A lactate dehydrogenase specific to the liver of gadoid fish. J. biol. Chem. 247: 585–593.Google Scholar
  59. Shaklee, J.B., K.L. Kepes & G.S. Whitt (1973). Specialized lactate dehydrogenase isozymes: The molecular and genetic basis for the unique eye and liver LDHs of teleost fishes. J. exp. Zool. 185: 217–240.Google Scholar
  60. Shaw, C.R. & R. Prasad (1970). Starch gel electrophoresis of enzymes — a compilation of recipes. Biochem. Genet. 4: 279–320.Google Scholar
  61. Sparrow, A.H., H.J. Price & A.J. Underbrink (1972). A survey of DNA content per cell and per chromosome of prokarytic and eukaryotic organisms: Some evolutionary considerations. Brookhaven Symp. Biol. 23: 451–494.Google Scholar
  62. Sparrow, A.H. & A.F. Nauman (1976). Evolution of genome size by DNA doublings. Science 192: 524–529.Google Scholar
  63. Thompson, A.R., J.W. Eveleigh, J.F. Laws & B.J. Miles (1968). The comparative biochemistry of mammalian creatine phosphotransferases. In: N.van Thoai and J. Roche, (eds.) Homologous Enzymes and Biochemical Evolution, Gordon Breach, New York, pp. 255–277.Google Scholar
  64. Thompson, K.S. & K. Maraszko (1978). Estimation of cell size and DNA content in fossil fishes and amphibians. J. exp. Zool. 205: 315–320.Google Scholar
  65. Watts, D.C. (1968). The origin and evolution of the phosphagen phosphotransferases. In: N.van Thoai and J. Roche (eds.), Homologous Enzymes and Biochemical Evolution. Gordon and Breach, New York, pp. 279–296.Google Scholar
  66. Watts, D.C. (1975). Evolution of phosphagen kinases in the chordate line. Symp. zool. Soc. London, 36: 105–127.Google Scholar
  67. Watts, D.C., B. Focant, B.M. Moreland & R.L. Watts (1972). Formation of a hybrid enzyme between echinoderm arginine kinase and mammalian creatine kinase. Nature New Biol., 237: 51–53.Google Scholar
  68. Watts, R.L. (1971). Genes, chromosomes and molecular evolution. In: E. Schoffeniels (ed.), Biochemical evolution and the origin of life. American Elsevier Pub. Corp., New York, pp. 14–42.Google Scholar
  69. Watts, R.L. & D.C. Watts (1968a). The implications for molecular evolution of possible mechanisms of primary gene duplication. J. theor. Biol. 20: 227–244.Google Scholar
  70. Watts, R.L. & D. C. Watts (1968b). Gene duplication and the evolution of enzymes. Nature 217: 1125–1130.Google Scholar
  71. Wheat, T.E., G.S. Whitt & W.F. Childers (1972). Linkage relationships between homologous malate dehydrogenase loci in teleosts. Genetics 70: 337–340.Google Scholar
  72. Wheat, T.E., G.S. Whitt & W.F. Childers (1973). Linkage relationships of six enzyme loci in interspecific sunfish hybrids (genus Lepomis). Genetics 74: 343–350.Google Scholar
  73. Whitt, G.S. (1969). Homology of lactate dehydrogenase genes: E gene function in the teleost nervous system. Science 166: 1156–1158.Google Scholar
  74. Whitt, G.S. (1970a). Developmental genetics of the lactate dehydrogenase isozymes of fish. J. exp. Zool. 175: 1–36.Google Scholar
  75. Whitt, G.S. (1970b). Genetic variation of supernatant and mitochondrial malate dehydrogenase isozymes in the teleost Fundulus heteroclitus. Experientic 26: 734–736.Google Scholar
  76. Whitt, G.S., E.T. Miller & J. Shaklee (1973). Developmental and biochemical genetics of lactate dehydrogenase isozymes in fishes. In: J.H. Schröder, (ed.) Genetics and Mutagenesis of Fish. Springer-Verlag, New York, pp. 243–276.Google Scholar
  77. Whitt, G.S., J.B. Shaklee & C.L. Markert (1975). Evolution of the lactate dehydrogenase isozymes of fishes. In: C.L. Markert (ed.), Isozymes IV. Academic Press, New York, pp. 381–400.Google Scholar
  78. Whitt, G.S., W.F. Childers, J.B. Shaklee & J. Matsumoto (1976). Linkage analysis of the multilocus glucosephosphate isomerase isozyme system in sunfish (Centrarchidae, Teleostei). Genetics 82: 35–42.Google Scholar
  79. Whitt, G.S., D.P. Philipp & W.F. Childers (1977). Aberrant gene expression during development of hybrid sunfishes (Perciformes, Teleostei). Differentiation 9: 97–109.Google Scholar
  80. Wilson, A.C., S.S. Carlson & T.J. White (1977). Biochemical evolution. Ann. Rev. Biochem. 46: 573–649.Google Scholar
  81. Zinkham, W.H., H. Isensee & J.H. Renwick (1969). Linkage of lactate dehydrogenase B and C loci in pigeans. Science 164: 185–187.Google Scholar

Copyright information

© Dr W. Junk bv Publishers 1980

Authors and Affiliations

  • Suzanne E. Fisher
    • 1
  • James B. Shaklee
    • 1
  • Stephen D. Ferris
    • 1
  • Gregory S. Whitt
    • 1
  1. 1.Department of Genetics and DevelopmentUniversity of IllinoisUrbanaU.S.A.
  2. 2.Laboratory of Pathology, National Cancer InstituteNational Institues of HealthBethesdaUSA
  3. 3.Hawaii Institute of Marine BiologyUniversity of HawaiiHonoluluUSA
  4. 4.Department of ZoologyUniversity of HawaiiHonoluluUSA
  5. 5.Department of BiochemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations