Boundary-Layer Meteorology

, Volume 48, Issue 1–2, pp 177–195

An ice breeze mechanism for boundary-layer jets

  • Rolf H. Langland
  • Paul M. Tag
  • Robert W. Fett
Research Note

Abstract

The existence of a low-level (z=~1000 m) jet adjacent to a sea-ice boundary is investigated with a two-dimensional numerical model. A thermally-direct ice breeze circulation is induced by specifying an ice-sea surface temperature gradient, with the mean geostrophic wind parallel to the ice edge. Pressure changes associated with over-water mixed-layer development create an increase in geostrophic velocity that accounts for most of the increase in wind speed. A change in initial geostrophic wind direction has significant effects on location and intensity of the low-level jet; geostrophic winds parallel to the ice edge result in stronger jets than occur with cross-ice geostrophic winds. An inertial oscillation simulated by the model in 1-D makes a negligible contribution to the low-level jet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes, R. A., Kuo, Y-R, Benjamin, S. G., and Li, Y-F.: 1982, ‘The Evolution of the Mesoscale Environment of Severe Local Storms: Preliminary Modeling Results’, Mon. Weather Rev. 110, 1187–1198.Google Scholar
  2. Blackadar, A. K.: 1957, ‘Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’, Bull. Am. Meteorol. Soc. 38, 283–290.Google Scholar
  3. Brook, R. R.: 1985, ‘The Koorin Nocturnal Low-Level Jet’, Boundary-Layer Meteorol. 32, 133–154.Google Scholar
  4. Brost, R. A., Lenschow, D. H., and Wyngaard, J. C.: 1982, ‘Marine Stratocumulus Layers. Part 1: Mean Conditions’, J. Atmos. Sci. 39, 800–817.Google Scholar
  5. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surfaces Layer’, J. Atmos. Sci. 28, 181–189.Google Scholar
  6. Chao, S. Y.: 1985, ‘Coastal Jets in the Lower Atmosphere’, J. Phys. Ocean. 15, 361–371.Google Scholar
  7. Chu, P. C.: 1986, ‘An Instability Theory of Ice-Air Interaction of the Migration of the Marginal Ice Zone’, Geophys. J. R. Astr. Soc. 86, 863–883.Google Scholar
  8. Dickison, R. B. B. and Neumann, H. H.: 1982, ‘The Occurrence of Nocturnal Low-Level Jets in New England and the Canadian Maritimes’, Atmosphere-Ocean 20(4), 287–300.Google Scholar
  9. Holton, J. R.: 1967, ‘The Diurnal Boundary Layer Wind Oscillation Above Sloping Terrain’, Tellus 19, 199–205.Google Scholar
  10. Holton, J. R.: 1979, An Introduction to Dynamic Meteorology. 2nd Ed., Academic Press, New York, 391 pp.Google Scholar
  11. Langland, R. H., Tag, P. M., and Fett, R. W.: 1987, ‘Numerical Simulation of a Satellite-Observed Calm Zone in Monterey Bay, California’, Wea. and For. 1, 261–268.Google Scholar
  12. Louis, J. F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.Google Scholar
  13. Malcher, J., and Kraus, H.: 1983, ‘Low-Level Jet Phenomenon Described by an Integrated Dynamical PBL Model’, Boundary-Layer Meteorol. 27, 327–343.Google Scholar
  14. McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.Google Scholar
  15. Reiter, E. R.: 1961, Jet Stream Meteorology. The University of Chicago Press, Chicago, Ill., 515 pp.Google Scholar
  16. Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents’, Papers in Phys. Ocean. and Meteor. 3, MIT and Woods Hole Ocean Inst., Woods Hole, Mass., 101 pp.Google Scholar
  17. Schwerdtfeger, W.: 1972, ‘The Vertical Variation of the Wind Through the Friction-Layer over the Greenland Ice Cap’, Tellus 24, 13–16.Google Scholar
  18. Shapiro, M. A. and Fedor, L. S.: 1986. The Arctic Expedition, 1984: Research Aircraft Observations of Fronts and Polar Lows Over the Norwegian and Barents Sea, Part 1. NOAA/ERL/Wave Propagation Laboratory, Boulder, CO 80303, 56 pp.Google Scholar
  19. Tag, P. M.: 1979, ‘A Numerical Simulation of Fog Dissipation Using Passive Burner Lines. Part 1: Model Development and Comparison with Observations’, J. Appl. Meteorol. 18, 1442–1454.Google Scholar
  20. Tag, P. M. and Payne, S. W.: 1987, ‘An Examination of the Breakup of Marine Stratus: A Three-Dimensional Numerical Investigation’, J. Atmos. Sci. 44, 208–223.Google Scholar
  21. Tag, P. M. and Rosmond, T. E.: 1980, ‘Accuracy and Energy Conservation in a Three-Dimensional Anelastic Model’, J. Atmos. Sci. 37, 2150–2168.Google Scholar
  22. Tag, P. M., Murray, F. W., and Koenig, L. R.: 1979, ‘A Comparison of Several Forms of Eddy Viscosity Parameterization in a Two-Dimensional Cloud Model’, J. Appl. Meteorol. 18, 1429–1441.Google Scholar
  23. Zemba, J., and Friehe, C. A.: 1987, ‘The Marine Atmospheric Boundary Layer in the Coastal Ocean Dynamics Experiment’, J. Geophys. Res. 92, 1489–1496.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Rolf H. Langland
    • 1
  • Paul M. Tag
    • 1
  • Robert W. Fett
    • 1
  1. 1.Naval Environmental Prediction Research FacilityMontereyUSA

Personalised recommendations