Advertisement

Boundary-Layer Meteorology

, Volume 20, Issue 3, pp 309–320 | Cite as

A nonstationary nocturnal drainage flow model

  • K. S. Rao
  • H. F. Snodgrass
Article

Abstract

The evolution and structure of the steady state of an idealized nocturnal drainage flow over a large uniformly-sloping surface are studied using a nonstationary model with a height-dependent eddy diffusivity profile and a specified surface cooling rate. The predicted mean velocity and temperature profiles are compared with Prandtl's stationary analytical solutions based on the assumption of a constant eddy diffusivity in the drainage layer. The effects of important physical parameters, such as the slope angle, surface cooling, atmospheric stability, and surface roughness, on the steady drainage flow are investigated.

Keywords

Surface Roughness Cool Rate Temperature Profile Physical Parameter Flow Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’. J. Atmos. Sci. 35, 1427–1440.Google Scholar
  2. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relations in the Atmospheric Surface Layer’. J. Atmos. Sci. 28, 181–189.Google Scholar
  3. Defant, F.: 1949, ‘Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde’. Arch. Meteor. Geophys. Biokl. A1, Springer-Verlag, 421–450.Google Scholar
  4. Defant, F.: 1951, ‘Local Winds’. Compendum of Meteorology T. F. Malone, ed., Amer. Meteor. Soc., Boston, 655–672.Google Scholar
  5. Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’. Quart. J. Roy. Meteorol. Soc. 100, 351–364.Google Scholar
  6. Ellison, T. H. and Turner, J. S.: 1959, ‘Turbulent Entrainment in Stratified Flows’, J. Fluid Mech. 6, 423–448.Google Scholar
  7. Gutman, L. N.: 1972, Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes. TT 71–50132, available from NTIS, Springfield, Va. 22151, 224 pp.Google Scholar
  8. Lettau, H. H.: 1966, ‘A Case Study of Katabatic Flow on the South Polar Plateau’. Studies in Antarctic Meteorology M. J. Rubin, Ed., Antarctic Res. Ser. 9, Amer. Geophys. Union, 1–11.Google Scholar
  9. Manins, P. C. and Sawford, B. L.: 1979, ‘A Model of Katabatic Winds’. J. Atmos. Sci. 36, 619–630.Google Scholar
  10. Nieuwstadt, F. T. M. and Driedonks, A. G. M.: 1979, ‘The Nocturnal Boundary Layer: A Case Study Compared with Model Calculations’. J. Appl. Meteorol. 18, 1397–1405.Google Scholar
  11. Prandtl, L.: 1942, Führer durch die Strömungslehre, Vieweg u. Sohn, Braunschweig, 373–375. Available in English as Essentials of Fluid Dynamics, Hafner Publishing Co., New York, 1952, 452 pp.Google Scholar
  12. Rao, K. S. and Snodgrass, H. F.: 1979, ‘Modeling the Nocturnal Drainage Flows. Part I’. ATDL Contribution File No. 79/5, NOAA-ATDL, Oak Ridge, Tn., 54 pp.Google Scholar
  13. Thyer, N. H.: 1966, ‘A Theoretical Explanation of Mountain and Valley Winds by a Numerical Method’. Arch. Meteor. Geophys. Bioklim., A15, 318–348.Google Scholar

Copyright information

© D. Reidel Publishing Co 1981

Authors and Affiliations

  • K. S. Rao
    • 1
  • H. F. Snodgrass
    • 1
  1. 1.Atmospheric Turbulence and Diffusion Laboratory, National Oceanic and Atmospheric AdministrationOak RidgeUSA

Personalised recommendations